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There is a scientific consensus regarding the reality of anthropogenic climate change.
This has led to substantial efforts to reduce atmospheric greenhouse gas emissions and
thereby mitigate the impacts of climate change on a global scale. Despite these efforts,
we are committed to substantial further changes over at least the next few decades.
Societies will therefore have to adapt to changes in climate. Both adaptation and
mitigation require action on scales ranging from local to global, but adaptation could
directly benefit from climate predictions on regional scales while mitigation could be
driven solely by awareness of the global problem; regional projections being principally of
motivational value. We discuss how recent developments of large ensembles of climate
model simulations can be interpreted to provide information on these scales and to
inform societal decisions. Adaptation is most relevant as an influence on decisions which
exist irrespective of climate change, but which have consequences on decadal time-scales.
Even in such situations, climate change is often only a minor influence; perhaps helping
to restrict the choice of ‘no regrets’ strategies. Nevertheless, if climate models are to
provide inputs to societal decisions, it is important to interpret them appropriately. We
take climate ensembles exploring model uncertainty as potentially providing a lower
bound on the maximum range of uncertainty and thus a non-discountable climate change
envelope. An analysis pathway is presented, describing how this information may
provide an input to decisions, sometimes via a number of other analysis procedures and
thus a cascade of uncertainty. An initial screening is seen as a valuable component of this
process, potentially avoiding unnecessary effort while guiding decision makers through
issues of confidence and robustness in climate modelling information. Our focus is the
usage of decadal to centennial time-scale climate change simulations as inputs to decision
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making, but we acknowledge that robust adaptation to the variability of present day
climate encourages the development of less vulnerable systems as well as building critical
experience in how to respond to climatic uncertainty.

Keywords: climate change; probability; decision making; vulnerability
Phi
1. Introduction

Anthropogenic climate change represents a challenge at many levels of society. The
global challenge is to minimize the risk of ‘dangerous’ climate change; reducing
greenhouse gas (GHG)emissions being themost obviousmethod.But climate change
is already being observed (Solomon et al. 2007) and further changes cannot be
avoided. Past GHG emissions provide a commitment to further increases in global
mean temperature and related changes in the climate system over the next century
and beyond (Meehl et al. 2005; Wigley 2005), while socio-economic inertia
(Ha-Duong et al. 1997) limits our ability to constrain the levels of future atmospheric
GHG concentrations. A range of 0.3–1.38 increase in global mean temperature has
been suggested for the 2020s over the 1990s (Stott & Kettleborough 2002), almost
independent of the GHG emission scenario assumed. Society will therefore have to
adapt to further changes in climate on time-scales of 20–100 years at least.

Efficient and effective adaptation presents a completely different set of
challenges compared to those of mitigation. Governments, individuals, industry
and other organizations need to build climate change-related risks into their
existing decision-making processes, with the aim of maximizing the long-term
value of today’s decisions. The approach of integrating climate information
alongside other decision drivers is referred to as climate risk management (Connell
et al. 2005; Bouwer & Aerts 2006; Hellmuth et al. 2007). Climate science has a role
here in terms of the availability of observational records, the assessment of
climatic vulnerabilities and the better utilization of weather and climate
prediction services. The approach may be combined with attempts to maximize
flexibility to future changes, keeping options open for adjustments in response to
changes which are greater than or different from those initially considered most
likely. For instance, flood protection measures could be designed with foundations
which simplify expansion, should it become necessary. This approach makes
no attempt to maximize the value of today’s decisions under a probability
distribution for future climate and no such probabilities are required.

Nevertheless, if we are to go beyond minimization of vulnerability to today’s
climate, we desire information on how climate will change in the coming decades on
regional or smaller scales (Bharwani et al. 2005)—preferably in the form of a
seamless prediction across time-scales (Washington et al. 2006). To the extent that
model-based information is relevant to our decision, it can be used in a climate risk
management framework, i.e. not as a primary decision driver but as extra
information to guide the choice of the best, ‘no regrets’, option. Frameworks for
incorporating such information are the subject of ongoing research (Jones 2001;
UKCIP08 2006), but we should not underestimate the fundamental difficulties in
extracting decision-relevant information on the time-scales of climate change
(Stainforth et al. 2007). Care is required to separate interpretations of value in
understanding climatic processes or climate models from those which may usefully
l. Trans. R. Soc. A (2007)
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inform real-world decisions. This presents challenges for scientists and their
funders. For climate science, the challenge is to provide information which is
relevant in societal decision-making processes (Stainforth et al. 2007). For research
funding bodies, the challenge is to ensure that the necessary inter- and multi-
disciplinary activities are in place to make connections between societal needs and
climate research, and thus guide the direction and interpretation of the science.

It is useful to consider these challenges in two timeframes. First, how to use
and interpret information from models/ensembles available now or in the near
future. Second, how to structure climate research to facilitate the provision of
useful information for decision support in the long term. A theoretical assessment
of the climatic processes and resolutions that we require to have significantly
improved confidence in model-based projections would usefully guide the model
development process. In the meantime, interpretation of current models requires
exploration of uncertainty, which demands new computing facilities and novel
computational strategies (e.g. Stainforth et al. 2004). Much further effort is
required in experimental design but recent work (e.g. Murphy et al. 2004;
Stainforth et al. 2005) provides ensembles of simulations which can be used to
explore methods and define a research path for meeting societal needs.

The theoretical opportunity for climate science to add value in many sectors of
society can only be addressed with a multi-disciplinary approach. Understanding
the possibilities and limitations of climate science is important. Understanding the
decisions and vulnerabilities of each different sector is of equal importance, not just
in making decisions but also in the analysis of model output. Where one decision
might be most vulnerable to changes in mean seasonal precipitation, another may
be influenced only by changes in extreme precipitation or by details of the daily
time-series through the season (Wilby et al. 2000). In climate forecasting one size
will not fit all. This is not simply a matter of presentation, although the
multifarious demands and semantics of user communities certainly provide a
communication challenge, but also influences the interpretation of climate
projections, where to focus climate research, and how to design ensemble
experiments. For instance, grand ensembles exploring model uncertainty could
be optimized to explore the range of behaviour in any, but not all, of the above
variables. A two-way communication between climate scientists and users of
climate science is therefore of fundamental importance. Only by understanding the
needs of different sectors can the science be usefully directed and communicated.
Only by understanding the conditions, assumptions and uncertainties of model-
based statements about future climate can decision makers evaluate the relevance
of the information and make informed, if subjective, assessments of risk.

In the following sections, we discuss how we can use current strategies for the
exploration of uncertainty in climate predictions.We illustrate howwe can interpret
largeclimate ensemblesusing results fromthe climateprediction.net experiment.The
output of complex climate models is often used as an input to impact models (e.g.
Hayhoe et al. 2006), sometimes via a dynamic or statistical downscaling step. The
output of thesemodelsmay then be taken as an input to the decision-making process.
We consider the same problem of connecting climate models with decision making
but explore how this can be structured in the context of large climate ensembles, the
cascade of uncertainty between the different components of the climate/impacts
system, and some of the assumptions and judgements necessary to connect the
different stages. We describe an analysis pathway to evaluate the potential
Phil. Trans. R. Soc. A (2007)
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implications of the simulations for some particular decision. This is potentially useful
for both the decision maker and the researcher in terms of judging the level of
complexity worth investing in a particular question. We illustrate the process using
two simplistic and idealized examples; one involving flood protection in Europe, the
other agricultural development goals in Africa.
2. Interpretation of climate ensembles

In this section, we discuss the types of information available to decision-making
processes from recent developments in the field of climate prediction. Section 3
examines the process of applying that information to a specific decision.

Detailed statements about future climate are usually based on the output of
complex climate models, three-dimensional atmosphere/ocean global circulation
models (GCMs), which are designed with the aim of encapsulating our
understanding of the physical climate system. A handful of these have been
developed by modelling centres worldwide (McAvaney et al. 2001; Meehl et al.
submitted). When driven by scenarios of future atmospheric GHG concen-
trations, their output is sometimes taken as indicative of a possibility for the
future and considered informative in decision making (e.g. UKCIP02 2002;
Hayhoe et al. 2006).

Much effort is currently focused on exploring the uncertainties in model-based
climate predictions (Palmer & Raisanen 2002; Stott & Kettleborough 2002;
Murphy et al. 2004; Frame et al. 2005;Piani et al. 2005; Stainforth et al. 2005;Knutti
et al. 2006; Lopez et al. 2006) with some focusing on regional scales (Tebaldi et al.
2005; Stainforth et al. 2006; Stott et al. 2006) which are arguably more relevant for
decision making. The consequences of uncertainty in how to build a climate model
are receiving particular attention. Many comparisons are made between the order
10 differentmodels which exist worldwide (Covey et al. 2000;McAvaney et al. 2001;
Meehl et al. submitted). In addition, two projects are carrying out systematic
uncertainty analyses based on a singleGCM.These are the quantifying uncertainty
in model predictions project (Murphy et al. 2004) with a few hundred simulations
and the climateprediction.net project (Stainforth et al. 2004) with a few hundred
thousand simulations. Both create ‘model versions’ by varying uncertain
parameters in the base model (Allen & Stainforth 2002).

Stainforth et al. (2007) rule out ‘the possibility of producing meaningful
probability density functions for future climate based simply on combining the
results from such ensembles; or emulators thereof’. These ensembles produce a
wide range of possibilities but exploration of uncertainty has so far been limited,
in terms of base models and parameter space explored, so we should expect these
ranges to increase if we carry out further experiments exploring model
uncertainty. Therefore, they argue that the ensembles may provide a lower
bound on the maximum range of uncertainty; ‘Lower bound’ because further
uncertainty exploration is likely to increase it; ‘Maximum range of uncertainty’
because methods to assess a model’s ability to inform us about real-world
variables, e.g. shadowing techniques (Judd et al. 2004), could potentially
constrain the ensemble and reduce the range. This description highlights some of
the conditions applying to the uncertainty estimate. Such information can
nevertheless be valuable as a guide to decision makers.
Phil. Trans. R. Soc. A (2007)
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Figure 1. Distribution of modelled precipitation and temperature for Northern Europe
(September/October/November) and East Africa (March/April/May) from the climatepredic-
tion.net first ensemble (Stainforth et al. 2005). (a,b) Crosses represent a control climate roughly
equivalent to the second half of the twentieth century with pre-industrial levels of atmospheric
carbon dioxide and atmosphere/ocean heat fluxes derived to maintain sea surface temperatures at
approximately 1960–1990 mean values. The dots show the mean response in years 8–15 after
doubling atmospheric CO2 concentrations. (c,d ) Response to doubling CO2 concentrations,
averaged over years 7–15 after an instantaneous change in atmospheric CO2 levels.

2167Climate model ensembles to inform decisions
If the available number of model versions is large then we can hope to extract
such ranges, or domains, for combined behaviour in multiple variables. We refer to
such a domain as a ‘non-discountable’ climate change envelope. Non-discountable
highlights that we should not disregard the possibility that the response could be
anywhere within the envelope. No claim is made about the possibility of a response
outside the envelope; it is not ‘discountable’, it is simply a region for which we have
no data. The envelope provides the prospect of evaluating ranges for real-world
vulnerabilities which usually have dependencies on a number of climatic variables
(Hulme & Brown 1998). Figure 1 shows the range of combined behaviour in mean
regional precipitation and mean regional temperature for Northern European
autumn and East African spring, from the climateprediction.net ensemble
analysed in Stainforth et al. (2005). This ensemble consists of 408 versions of
a complex climate model with a slab ocean; data is available as means over years
7–15 after the start of simulations with both pre-industrial (control) and double
pre-industrial (2!CO2) atmospheric CO2 concentrations. In most cases, the value
for each model version is the mean over an initial condition ensemble (Stainforth
et al. 2005). The same quality control procedures as in the earlier work were
Phil. Trans. R. Soc. A (2007)
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applied. Despite the idealized nature of the experiment, it illustrates how from a
suitable experiment we might extract a domain of response space representing the
two dimensional ‘lower bound on the maximum range of uncertainty’. The
currently ongoing climateprediction.net experiment is based on scenarios of
twentieth and twenty-first century GHG concentrations and will thus provide
additional information. The design and implementation of such experiments to
extract and explore these ranges nevertheless remains a significant challenge for
the climate modelling community.

In figure 1a,b, there is a clear separation of temperatures between control and
2!CO2 simulations. At these large regional scales, the global scale warming
effect of doubled atmospheric CO2 almost takes us beyond the limits of model
uncertainty in the control temperature. In precipitation there is some overlap in
Northern Europe and almost complete overlap in East Africa; the effect of
increased CO2 is mostly within the minimum bounds of uncertainty in the model
itself. However, when we look at the anomalies between 2!CO2 and control
(figure 1c,d ) we see a fairly consistent message on precipitation change in both
regions—almost all model versions show an increase. Interpreting this as
meaningful for the real world involves the assumption that the regional
precipitation response to increased CO2 is independent of the absolute value in
the region since the changes are relative to very different control values. Selecting
ensemble members which are consistent with observations would remove this
assumption but leads to the unuseful exclusion of all model versions (Stainforth
et al. 2007; a consequence of model inadequacy) and assumes that the model
variables have a direct correspondence with their real-world namesakes; other
assumptions for this relationship are possible and may be useful. Therefore, we
are left with the domain of anomalies as the lower bound on the maximum range
of uncertainty; our climate change envelope. For many variables, this may be the
best information climate modelling can currently provide as a potential input to
a societal decision.

Figure 1 presents regional, seasonal, long-term means. Climate is however a
distribution of possible behaviour (Stainforth et al. 2007) and decisions are rarely
dependent simply on the mean. The climateprediction.net ensemble presented
here includes small initial condition ensembles (between 2 and 7 members) for
most model versions (Stainforth et al. 2004, 2005). The points in figure 1 are
means over these distributions. A grand ensemble is the combination of
perturbed physics and initial condition sub-ensembles. If such ensembles
can be implemented with large initial condition sub-ensembles it will be possible
to go beyond the means of the distribution; perhaps looking at the lower
bound on the maximum range of uncertainty for the 5 or 95% values for a
variable. Such information is likely to provide valuable additional information for
risk assessments.

Although we cannot confirm the relevance of any climate forecast (Oreskes
et al. 1994; Stainforth et al. 2007), we may be able to judge some to be irrelevant
for decision support. For instance, complex climate models qualitatively
misrepresent the diurnal cycle of tropical precipitation (Trenberth et al. 2003);
so model predictions of changes in that cycle may be judged irrelevant. Scientific
judgement on whether the model structure can simulate the processes we believe
to be important for our chosen variables is therefore an important complement to
the model results in terms of providing decision support.
Phil. Trans. R. Soc. A (2007)
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3. From climate model ensembles to decision inputs

Section 2 illustrates how, with suitably designed ensembles of climate model
simulations,we canextract adomain representinganon-discountable climate change
envelope for some aspects of future climate. In this section, we present an analysis
pathway, which highlights some of the stages required in extracting the relevant
climate change envelope and linking model results with specific societal decisions.
Althoughdiscussed in general terms, we illustrate the process using two hypothetical
and highly idealized decisions; our focus here is on the required climate analysis and
research, not the overall risk-assessment or decision-making framework.

The first is a decision on what level to invest in a major flood protection measure
for some inland town in Northern Europe. Given the substantial floods
experienced in recent years, this is a question which is facing planners in a
number of countries in the region. Two design options are examined: option one
represents a lower cost response sufficient to protect against what is thought to be
a one in a 130 year extreme river flow today; option two costs 50% more but
protects against what is thought to be a one in 200 year event today. If protection
against a one in a 100 year event is judged, e.g. by local planning organizations, to
be an acceptable risk then option one is sufficient today. The question is whether it
will still be sufficient in the future; will either option limit inundation of the town
to at least a one in a hundred year event in the 2050s? The second example is a
decision of whether or not to invest in a substantial storage and transport
infrastructure to enable export of an agricultural product (e.g. coffee or sorghum
millet) from a region in East Africa. This is a question which may be faced by
national and local governments in the countries of the region and by international
aid agencies. For simplicity of illustration, both are presented as binary decisions;
of course real decisions would involve many alternative options.
(a ) Initial steps

The analysis pathway consists of a number of steps, illustrated in figure 2a.
The first two steps may be obvious but are nevertheless worth highlighting. The
first is a review of whether climate change is likely to influence the decision
(Hulme & Brown 1998). If changes in regulations or guidelines led to protection
against the one in 150 year event becoming the acceptable standard then option
two would become the default flood protection option regardless of climate
change factors. Local regulations such as protection of areas or buildings may
rule out one option or the other. In Africa, other developments may be leading to
soil degradation or population migration, making the investment unwise. Or the
benefit to the local region may be so great—based on recent production statistics,
local interest and anticipated costs—that facilities which have a lifetime of only
10 years would nevertheless be worthwhile to the community and judged to be a
good investment. This step is simply a reminder to reflect that even though the
system under study may be affected by climate change, related decisions may
not. In reality, few long-term investment decisions in Africa have taken climate
into account (Washington et al. 2006).

Step 2 involves an assessment of the aspects of the decision which may be
sensitive to climate change; the climate change sensitive factors (CCSFs). In our
examples, these might be the return period for an event which overcomes flood
Phil. Trans. R. Soc. A (2007)
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Figure 2. (a) Analysis pathway for the interpretation of large climate ensembles as information in
decision-making processes. (b) Illustration of how a climate change envelope can be translated into
a distribution of behaviour in the CCSF of a decision.
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defences and inundates the town or tonnes of crop produced per hectare. Climate
may not be the only, or even the major, influence on these factors. For instance,
flood risk may be influenced by constructions up or down stream; agricultural
production by changing farming practices. But to the extent that climate change
influences our decision it does so via these factors.

(b ) Selecting model variables

In step 3, we jump to the climate model side of the problem and identify the
variables (including time and spatial scales) in our model simulations, which we can
use to derive information about our CCSFs. We call these relevant model variables
(RMVs). A plethora of choices will exist at this stage, but the experimental design of
the ensemble and data storage structures will provide many restrictions.
Precipitation and temperature will be the most significant variables for Northern
European flood risk but wind speed, evaporation and humidity may also be
included. Extreme precipitation on a daily basis may be useful, better still daily
time-series of our chosen variables, since river flows are not governed simply by
individual extremes but also by integrating factors of the local hydrology (Wilby &
Harris 2006). Since we are interested in risk (e.g. the 99% extreme river flow in the
2050s), aspects of the distribution of these variables over large initial condition sub-
ensembles is likely to be relevant if available. In our Africa example, the same
variables are likely to be important but here changes to the seasonality of rainfall
may also be critical as this may strongly influence agricultural production.

Some variables, and particularly some temporal scales, may not be available
either due to limits on the amount of data which can be extracted and stored
from each simulation or operational decisions to make available only means or
distributions rather than the whole dataset. Greater involvement of decision
makers and risk assessment specialists in the design of climate model experiments
therefore has the potential to increase the usefulness of resulting datasets.

Beyond practical restrictions, there is still a matter of judgement in the
selection of RMVs. This comes from an assessment of the relative confidence we
can place in the ability of the global models to potentially simulate the climate
Phil. Trans. R. Soc. A (2007)
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change response in the variables in question (Smith 2002; Stainforth et al. 2007).
We include this assessment as a separate step, step 4, since it may lead to the
conclusion that the ensemble contains no decision-relevant information and that
there is no value in pursuing the study further. Or it may lead to a
different choice of RMVs, perhaps less than ideal for statistical downscaling or
use in the impact model but excluding those model variables in which we have
the least confidence.

Directly relevant spatial scales are not currently available from AOGCMs for
most decisions, so we might need to include a downscaling step (steps 6a and 8a).
Consideration of how this downscaling may be done influences the choice of
RMVs, so we discuss it here although difficulties in treating downscaling within
the framework of grand ensembles are discussed in §3c. Two fundamentally
different approaches are available: dynamical downscaling using a regional model
(Rummukainen et al. 2004; Kay et al. 2006a,b) or statistical downscaling (Wilby
et al. 2000; Hewitson & Crane 2006; Schmidli et al. 2007) in one of many forms.
Using currently available techniques, the former would require integration with
the global model experiment. Unfortunately comprehensive exploration of model
uncertainty including that involved in dynamical downscaling is not yet
available. The latter includes many different approaches requiring different
inputs. It raises the prospect of sensitivity analyses using different RMVs; we
may choose to deduce river flow extremes from monthly means, monthly
extremes or daily time-series. Such sensitivity analyses may be of value not just
in the decision-making process but also in the assessment and improvement of the
climate and impact (in this case, hydrological or agricultural production) models.

So far we have considered RMVs to be variables which affect our CCSFs
directly. An alternative approach is to use proposed teleconnections and take the
RMVs in these distant, usually larger scale variables. This may be particularly
valuable if we have greater confidence in the models’ abilities to simulate these
variables, and their response to increased concentrations of atmospheric GHGs.
For instance, central equatorial African rainfall has been linked with large-scale
circulation patterns over the North Atlantic and a possible further link to sea
surface temperatures in the tropical North Atlantic (Todd & Washington 2004).
Rainfall in Europe has been linked with the arctic oscillation (Thompson &
Wallace 2000). These connections provide an alternative route for selecting RMVs
and thus examining the ensemble implications for the decision in question.
(c ) Assessment of implications

Having made a choice of RMVs, step 5 simply involves extracting them from
the ensemble and constructing their climate change envelope. Examples of this
process for regional, seasonal mean temperature and precipitation were described
earlier and shown in figure 1.

Step 6 is to make a first pass assessment of the implications of this envelope on
the CCSFs of our decision. For any values of our RMVs, we can deduce the
corresponding CCSFs; probably using a downscaling procedure and an impact
model. These stages bring in their own uncertainties which should be quantified.
Uncertainties in the formulation of impact models and regional climate models
could be studied using a perturbed-parameter approach (Wilby & Harris 2006)
similar to that being used in the global models (Stainforth et al. 2004). Beyond
Phil. Trans. R. Soc. A (2007)
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these, there may be uncertainties in the assumptions used to build the impact
model. For instance, the hydrological model used to obtain the river flows and
therefore flood risks will include details of the local hydrology which would be
affected by developments up- and downstream. Similarly, potential crop yields in
our African example will be dependent on many aspects of farming practices
including availability of fertilizers and equipment. There is therefore a cascade of
uncertainty from the global climate model predictions to the decision input.
Where possible, it is useful to keep uncertainty in societal aspects separate
from those relating to how we understand and model the process. The decision
maker may have an educated view of the scale of the former while it may not
be possible to have an educated quantitative view of the latter without exploring
it systematically.

In figure 1, we have over 400 model versions but climate ensembles are now
achieving hundreds of thousands of simulations (www.climateprediction.net).
Applying a downscaling and impact assessment for each of these is a formidable
task; doubly so considering the need to explore uncertainty in the downscaling
and impact model. The climate change envelope provides a means of simplifying
this task. As an initial screening, we can focus on the boundaries of the
envelope; the solid line in figure 2b. Examining the impact on our CCSFs of
points on this boundary (the solid circles) gives an indication of the range of
values for our CCSFs, assuming no significant nonlinearities or complex
behaviour in the relationship between RMVs and CCSFs. The result is
illustrated by the histogram in figure 2b. The problem is therefore reduced
back to the analysis of maybe a few tens of points in RMV space. As with the
climate ensemble, the shape of the histogram provides no information about the
likelihood of real-world response. But the range may represent a lower bound on
the maximum range of uncertainty, now also conditional on the downscaling
method and the impact model. Including uncertainty analysis in the downscaling
and impact assessment produces a distribution which can be interpreted in the
same way but allows for the prospect of more complex assessment because these
processes may be susceptible to confirmation (Oreskes et al. 1994) in a way
climate change models are not (Stainforth et al. 2007).

We can then ask whether we have a clear message for our decision (step 7 ).
For instance, is the minimum (maximum) impact on crop yield so great (small)
that the investment is likely to face difficulties (no difficulties) under all the
climate change possibilities identified? Is the maximum impact on flood risk so
small that option 1 still provides protection against at least a 100 year event at
some point in the future, i.e. we have no clear information suggesting that greater
protection is needed, or is it so large that option 1 may only protect against a 50
year event while option 2 still protects against at least a 120 year event, i.e. we
have information suggesting that option 1 may be insufficient but have no
information suggesting that option 2 may be insufficient? If so, then to the extent
that we trust the models’ simulations of the chosen variables, the relationship
between RMVs and CCSFs, and the lack of significant nonlinearities, we have a
clear input to the decision.

If we do not have a clear message then we must simply accept that this is the
case and use the information gained to improve our understanding and ability to
model the systems. The range of responses may include the possibility that there
is no increase in flood risk and also that the increase is so high that neither option
Phil. Trans. R. Soc. A (2007)
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provides the desired level of protection. The range of responses may include the
possibilities that the chosen crops will not be viable in the region and also the
production could be substantially higher than in today’s climate. Even this
information can be useful to the decision maker in terms of focusing attention not
on a particular response but on options which allow flexibility for adjustments in
the future.

If we do have a clear message we may choose to explore the envelope more
thoroughly (step 8). This is a matter of judgement based on an understanding of
the particular decision in question. In most cases, the relationship between
RMVs and CCSFs is complex. But the dominant effects over the domain of
interest may be believed to be monotonic in each RMV; the envelope boundary
therefore providing a good indication of the possible range of response. We might
choose to question this assumption, particularly if the envelope spans regions of
discontinuities such as the maximum growing temperature for our crop.
Exploring the region of the climate change envelope uniformly—as illustrated
in figure 2b—has the advantage of filling in gaps where there may be few models
while still limiting overall numbers to maybe some tens or hundreds rather than
hundreds of thousands. However, if there is some physical reason to believe that
some part of RMV space may lead to a significantly different response in the
CCSFs then it is sensible to focus on this region. Since we are only interested in
the extremes of the resulting distribution (step 9), we are simply looking for the
best way to find complex behaviour which takes the CCSFs beyond the range
found by exploring the envelope boundary. More refined sampling strategies such
as latin hypercubes may be useful, particularly if the dimensionality of the RMV
space is greater than the two dimensions illustrated.

Finally, we highlight that the above analysis pathway included some
judgements on the choice of RMVs. For some decisions, and to better understand
the implications of different methodological choices, it may be valuable to carry
out sensitivity analyses of these assumptions. Step 10 represents this process in
terms of reselecting alternative RMVs and repeating the procedure.
4. Conclusions

Recent developments in experimental techniques are providing large ensembles
exploring a number of different sources of uncertainty in climate models. Such
experiments are increasing our understanding of the range of possible model
behaviour in response to scenarios of increasing levels of atmospheric GHGs. For
some predictive variables, they may be interpreted as providing a lower bound on
the maximum range of uncertainty. We have described an analysis pathway by
which such information may provide a contribution to present day decisions. An
important aspect of the approach is the concept of a non-discountable climate
change envelope, a multi-variable form of a lower bound on the maximum range
of uncertainty, which provides the relevant information from the global climate
ensemble but helpfully limits the degree of further analysis necessary to extract
information which may be relevant to some given decision.

The relevance of the resulting information is primarily governed by the
confidence we have in our climate models being able to simulate the climate
system sufficiently well to provide information on the variables and regions of
Phil. Trans. R. Soc. A (2007)
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interest under future levels for atmospheric GHGs. Further work is required to
define how we may evaluate that confidence and to work towards models which
meet our requirements. Part of that process involves study of the linkages
between climate change and real-world decisions and the evaluation of
uncertainties in each component.

We thank all participants in the climateprediction.net experiment and the many individuals who
gave their time to make that project a reality. This work was supported by the Natural
Environment Research Council and the Tyndall Centre for Climate Change Research.
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