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Abstract Expert elicitation studies have become important barometers of sci-
entific knowledge about future climate change (Morgan & Keith, 1995; Reilly
et al., 2001; Morgan et al., 2006; Zickfeld et al., 2007; Kriegler et al., 2009;
Zickfeld et al., 2010). Elicitations incorporate experts’ understanding of known
flaws in climate models, thus potentially providing a more comprehensive pic-
ture of uncertainty than model-driven methods. The goal of standard elicita-
tion procedures is to determine experts’ subjective probabilities for the values
of key climate variables. These methods assume that experts’ knowledge can
be captured by subjective probabilities – however, foundational work in deci-
sion theory has demonstrated this need not be the case when their informa-
tion is ambiguous (Ellsberg, 1961). We show that existing elicitation studies
may qualitatively understate the extent of experts’ uncertainty about climate
change. We designed a choice experiment that allows us to empirically deter-
mine whether experts’ knowledge about climate sensitivity (the equilibrium
surface warming that results from a doubling of atmospheric CO2 concen-
tration) can be captured by subjective probabilities. Our results show that,
even for this much studied and well understood quantity, a non-negligible pro-
portion of climate scientists violate the choice axioms that must be satisfied
for subjective probabilities to adequately describe their beliefs. Moreover, the
cause of their violation of the axioms is the ambiguity in their knowledge. We
expect these results to hold to a greater extent for less understood climate
variables, calling into question the veracity of previous elicitations for these
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quantities. Our experimental design provides an instrument for detecting am-
biguity, a valuable new source of information when linking climate science and
climate policy which can help policy makers select decision tools appropriate
to our true state of knowledge.

Keywords Expert Elicitation · Uncertainty · Ambiguity · Climate Sensitivity

Climate models and observational data are core elements of climate sci-
ence, but predictions based on them are known to suffer deficiences (Stainforth
et al., 2007; Knutti, 2008) arising from the intrinsic difficulties in predicting
high dimensional nonlinear systems (Smith, 2002, 2007) and incomplete under-
standing of relevant physical processes (Zickfeld et al., 2010). Careful expert
elicitations can partially account for these difficulties, as experts are aware
not only of models and their predictions, but also their relative strengths and
weaknesses, and can factor this ‘meta-knowledge’ into their probabilistic as-
sessments (Reilly et al., 2001). While human probability estimates are subject
to biases (Kahneman et al., 1982), carefully conducted elicitations can mini-
mize their impact on results (Morgan & Henrion, 1992).

The purpose of most elicitation studies is to attempt to estimate experts’
subjective probabilities for the values of key physical parameters, climate sen-
sitivity being a much studied example. Subjective probabilities are assumed
to completely capture ‘degrees of belief’ about the likely values of these pa-
rameters. The most satisfactory ontology of subjective probabilities is that
offered by modern decision theory (Ramsey, 1931; De Finetti, 1937), in partic-
ular axiomatic subjective expected utility (SEU) theory (Savage, 1954), which
forms the bedrock of a myriad of applications in the social sciences, includ-
ing economic analysis of climate policy (Stern, 2007). In this scheme, experts
reveal their subjective probabilities through choices over bets with uncertain
outcomes; one works backwards from observed choices and principles of ratio-
nal choice to infer subjective probabilities. Subjective probabilities are thus
derivable from objective observations, placing them on a sound operational
footing.

Not all beliefs, however, can be represented by subjective probabilities. In
1961 Daniel Ellsberg (Ellsberg, 1961) showed that many people (even eminent
decision theorists) prefer to violate the axioms of SEU1 in situations of deep
uncertainty, where information about the likelihoods of alternative outcomes is
incomplete, inconsistent, or non-existent. One of Ellsberg’s classic choice prob-
lems is described in Figure 1. Many people are not dissuaded from the choices
depicted in the figure even after their violation of the axioms of SEU is pointed
out to them (Ellsberg, 1961; Slovic & Tversky, 1974). A large literature (e.g.
Gilboa et al. (2009); Binmore (2009); Gilboa (2009) and references therein)

1 In fact, one of Ellsberg’s choice problems (see Figure 1 below) rules out preference
representations much more general than SEU. The choices described in Figure 1 are in-
consistent with any probabilistically sophisticated (Machina & Schmeidler, 1992) preference
representation.
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Fig. 1 The Ellsberg Problem. Imagine that you are presented with Urn A, containing 10
balls, 5 red and 5 blue. A single ball will be drawn from the urn at random. A RED (BLUE)
bet pays out $100 if a red (blue) ball is drawn from the urn, and zero otherwise. Clearly, it is
reasonable to be indifferent between the RED and BLUE bets. Since the payoffs in each of
these bets are equal (but opposite), indifference between RED and BLUE reveals a subjective
probability of 0.5 that the ball will be red. Now consider Urn B, again containing 10 balls,
each either red or blue, however this time in unknown proportions. When faced with a choice
between RED or BLUE bets in this urn, many people again express indifference, allowing
us to again infer a 0.5 subjective probability that a ball drawn from this urn will be red.
Finally, when asked whether they would prefer a RED bet on Urn A, or a RED bet on Urn B,
many people express a strict preference for betting on Urn A, preferring to bet on a known
rather than an unknown risk. However, according to the tenets of subjective probability,
these bets are identical, since their payoffs are the same, and it has been established that
the subjective probability of drawing a red ball is the same in each urn. We thus arrive at a
contradiction – there is no set of subjective probabilities that can describe both indifference
between RED and BLUE on Urns A and B, and a strict preference for RED in Urn A over
RED in Urn B.

has argued that such choice behaviour, referred to as ambiguity aversion, is
rational in situations of informational paucity.

It is thus an empirical matter to determine whether subjective probabilities
accurately capture experts’ knowledge. If experts exhibit ambiguity aversion
over bets on the quantity of interest we qualitatively understate the extent
of their uncertainty if we force their beliefs into the straitjacket of subjective
probabilities. Existing elicitations almost invariably presuppose the existence
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of subjective probabilities2, since experts’ cumulative distribution functions
(CDF) are elicited directly, instead of inferred from choices over bets with
uncertain outcomes. Such choice tasks can allow experts to express a richer
variety of beliefs, and can be used as diagnostics to determine the quality of
their information. If experts’ knowledge is indeed ambiguous, this is important,
policy relevant, information – the decision tools appropriate for policy evalu-
ation under ambiguity are substantially different from those that apply when
subjective probabilities are available (Ellsberg, 2001; Binmore, 2009; Gilboa,
2009).

The Ellsberg Problem in Figure 1 can be modified to detect ambiguity
in experts’ scientific knowledge (Heath & Tversky, 1991). We focussed on
climate sensitivity3 (S), as it is possibly the most familiar parameter of climate
change science, is widely studied in both the expert elicitation and conventional
scientific literature, and is much used in economic analysis of climate policy
(Stern, 2007; Nordhaus, 2008).

Values of S corresponding to the 5th, 50th, and 95th percentiles of each
scientist’s hypothesized CDF for S were initially elicited using standard direct
probabilistic elicitation techniques (Morgan & Henrion, 1992). The results of
this initial portion of the survey are presented in Figure 2, alongside results
from two previous such elicitations, and a collection of model-based probability
distributions for climate sensitivity taken from Meinshausen et al. (2009). The
figure shows that our results are similar to those obtained in the recent study
of Zickfeld et al. (2010)4. Both our study and the Zickfeld et al. (2010) study
show a substantial increase in estimates of the percentiles relative to the early
study of Morgan & Keith (1995).

In the second half of our survey the experts completed four sets of betting
tasks – three sets of bets on the value of S (one set at each of the expert’s
elicited percentiles), and one set of bets on the Ellsberg Problem. We will refer
to the three betting tasks on the value of S as the Climate Problem. For each
task in the Climate Problem, experts were asked to make three choices: first
between bets on the colour of a ball drawn from an urn of known composition
(calibrated to match the percentile of S), then between comparable bets on
the value of S, and finally between a bet on the urn with known composition
and a bet on the value of S. In order to clarify this part of the experiment,
consider the following simple example:

Suppose that an expert’s estimate for the median of the distribution for S
is S0.5. We presented this expert with the following betting tasks:

2 Kriegler et al. (2009) is an exception, however its results are difficult to interpret since it
prompted experts for a range of probabilities (taking the existence of imprecise probabilities
for granted), instead of inferring the non-existence of subjective probabilities from observed
choices.

3 The precise definition of climate sensitivity we used is quoted in the Supplementary
Information, and is also available on the survey website.

4 We computed a two-sided Wilcoxon rank-sum test at each of the three percentiles to
test the hypotheses that the percentile estimates in our study and Zickfeld et al. (2010) were
drawn from the same sampling distributions. All of the P-values from the three tests exceed
the Bonferroni corrected 5% threshold.
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Fig. 2 Comparison of elicited percentiles of the probability distribution for climate sensitiv-
ity in this study with two previous elicitations (Zickfeld et al., 2010; Morgan & Keith, 1995),
and with the model based estimates collated by Meinshausen et al. (2009). The number of
tick marks at each percentile in the elicitation studies does not coincide with the size of the
sample, as several experts reported overlapping values.

Choice I: Urn I contains 100 balls, 50 red and 50 blue. Choose between
bets A and B, or are you indifferent between them?

– A: Win $50 if a red ball is drawn, and zero otherwise.
– B: Win $50 if a blue ball is drawn, and zero otherwise.

Choice II: Consider the true value of climate sensitivity S. Choose between
bets C and D, or are you indifferent between them?

– C: Win $50 if S > S0.5, and zero otherwise.
– D: Win $50 if S < S0.5, and zero otherwise.

Suppose that the expert was indifferent between A and B, and also in-
different between C and D. We would then present her with a third betting
task:
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Choice III: Consider the true value of climate sensitivity S, and Urn I.
Choose between bets A and C, or are you indifferent between them?

– A: Win $50 if a red ball is drawn from Urn I, and zero otherwise.
– C: Win $50 if S > S0.5, and zero otherwise.

In exact analogy with the Ellsberg Problem represented in Figure 1, if the
expert exhibits a strict preference for A over C, or indeed C over A, she has vio-
lated SEU, and her preferences are inconsistent with the existence of subjective
probabilities. In this manner, a set of three choices is presented to each expert
at each of her elicited percentiles. The construction of the bets and inference
of SEU violations at the 5th and 95th percentiles is more complex than in this
simple example – interested readers may consult the Supplementary Informa-
tion for further details. After the experts had completed the Climate Problem,
they also completed a set of betting tasks on the classic Ellsberg Problem of
Figure 1. The results of both these sets of betting tasks – the Climate Problem
and the Ellsberg Problem – are summarized in Figure 3.

To interpret the results in Figure 3, begin by noting that violation of SEU
in the Ellsberg Problem indicates that an expert prefers to bet on known
rather than unknown risks – she is ambiguity averse. Ambiguity aversion on
the Ellsberg Problem provides a potential causal explanation for violations
of SEU on the Climate Problem. That is to say, SEU violations in the Ells-
berg Problem reveal experts’ attitudes towards deep uncertainty. If we then
observe similar violations of SEU on the Climate Problem, we can use what
we know about their attitudes to deep uncertainty (as revealed in the Ellsberg
Problem) to try to understand whether these violations of SEU are due to the
presence of ambiguity about S. In order to establish that ambiguity is indeed
the cause of SEU violations for bets on S, we need to perform statistical tests
to determine whether there is a dependence between SEU violations on the
Ellsberg Problem and SEU violations on the Climate Problem. Thus our anal-
ysis does not assume that any single SEU violation on the Climate Problem,
which may be due to idiosyncratic factors, is definitive evidence of ambiguity
about S. Rather, we treat SEU violations as a noisy signal, and use statistical
analysis to infer the presence of ambiguous knowledge about S in the sample.
To examine these issues quantitatively it is useful to summarize the results of
the experiment in a contingency table (Table 1).

17% of the sample violated SEU on bets on S, while 31% of the sample
violated SEU on the Ellsberg Problem5 (N = 29). From Table 1 we see that

5 Experts in our sample were less likely to violate SEU on the Ellsberg Problem than in
most other published studies, where SEU violation rates can be up to 80% (Slovic & Tver-

Table 1 Contingency table for SEU violations on the Ellsberg Problem (EP ) and Climate
Problems (CP ) (N = 29)

Violation of SEU on CP No violation of SEU on CP
Violation of SEU on EP 3 6
No violation of SEU on EP 2 18
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Fig. 3 Summary of results from the Climate and Ellsberg Problems. Dark lines are those
experts who exhibited ambiguity aversion on the Ellsberg Problem described in Figure 1,
while light lines are those who did not. Tick marks on each line indicate the 5th, 50th,
and 95th percentile of the expert’s CDF for climate sensitivity, as elicited by conventional
direct methods. Circles indicate that the expert violated SEU on the Climate Problem at
the corresponding percentile of S.

33% of the experts who violated SEU on the Ellsberg problem also violated
SEU on at least one bet6 in the Climate Problem (N = 9), while 10% of the

sky, 1974; Camerer & Weber, 1992). This most likely reflects the scientist’s mathematical
training, and suggests that those SEU violations that we do observe are likely not due to
lack of familiarity with the rules of probability theory.

6 Note that all we need to show is that SEU is violated once in order to conclude that an
expert’s knowledge cannot be described by subjective probabilities. One might argue that
it is easy to observe at least one violation of SEU by simply asking experts to make bets
on a large number of values of S, however the larger the number of bets, the less power the
experimental design has to detect correlations between behavior in the Ellsberg Problem
and that in the Climate Problem. The current design achieves a balance between detecting
SEU violations, and preserving sufficient statistical power to allow us to ascribe them to the
presence of ambiguity.



8 Millner et. al.

experts who did not violate SEU on the Ellsberg Problem violated SEU on
at least one bet in the Climate Problem (N = 20). If SEU violations in the
Climate Problem were not caused by ambiguity about S, the proportion of
SEU violators on S would not depend on whether experts violated SEU on
the Ellsberg Problem. Thus our null hypothesis is that the proportion of SEU
violators on the Climate problem should be the same for SEU violators on the
Ellsberg Problem and for non-SEU violators on the Ellsberg Problem. Using
Barnard’s test (Barnard, 1945) – an exact test of independence valid for small
samples, and with high power for 2×2 contingency tables – we reject this null
hypothesis at the 10% level (one-sided test7, P = 0.083). This suggests that
it is indeed the ambiguity in S that drives SEU violations in the Climate
Problem. Theory predicts that the upper tail of the distribution for S is less
constrained by the instrumental record than the rest of the distribution (Allen
et al., 2006; Roe & Baker, 2007), and is thus more likely to be ambiguous. Our
results are also consistent with this prediction – the strength of the association
between SEU violations on the Ellsberg Problem and SEU violations on S
is increasing in the percentiles of S (see Supplementary Information). If we
restrict the analysis only to SEU violations on bets at the 95th percentile
for S the results are significant at the 5% level (one-sided test, P = 0.045).
Finally, the data also illustrate the difference between risk as captured by the
width of the elicited subjective probability distribution, and ambiguity. We
cannot reject the hypothesis that SEU violations in the Climate Problem are
independent of whether experts’ elicited 5-95% range for S was above or below
the sample median (P = 0.574, see Supplementary Information).

We thus observe three patterns in the data:

1. There is a positive dependence between SEU violations in the Ellsberg
Problem and SEU violations in the Climate Problem.

2. The evidence for dependence between SEU violations on the Ellsberg Prob-
lem and SEU violations on the Climate Problem is strongest in the upper
tail of the elicited distributions for S.

3. SEU violations in the Climate Problem are not significantly dependent on
‘risk’, as measured by the width of the elicited distribution for S.

The hypothesis that those experts who violate SEU on the Climate Problem
are doing so because their knowledge of the distribution of S is ambiguous is
consistent with all these patterns. Although our results reflect the opinions of
a moderate number of experts, our statistical analysis is exact, and does not
rely on asymptotic methods that only hold for large samples.

Our experimental design was intentionally conservative, focussing on one
of the most studied quantities in climate science, and is likely to understate
the presence of ambiguity (see Supplemental Information for a discussion). It

7 We use a one-sided test as our hypothesis is that ambiguous beliefs about climate sen-
sitivity cause SEU violations on the Climate Problem to be more likely amongst those who
violate SEU on the Ellsberg Problem than amongst those who do not. Thus our alternative
hypothesis is ‘positive dependence’ between SEU violations on the Ellsberg and Climate
Problems.
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is likely that elicitations conducted for more geographically localized, or less
understood, climate variables (e.g. transient climate response (Zickfeld et al.,
2010), aerosol forcing (Morgan et al., 2006), Atlantic meridional overturning
(Zickfeld et al., 2007)) are more susceptible to the effects of ambiguity. Nev-
ertheless, we believe that expert elicitation studies do contain useful informa-
tion, and view our methods as a complementary test of the quality of elicited
probabilities which allows us to detect ‘uncertainty about uncertainty’. De-
tecting ambiguity in experts’ beliefs does not imply that their opinions cannot
be captured by elicitations, but rather that alternative methods, e.g. impre-
cise probability estimates (Walley, 1990; Kriegler et al., 2009), may be more
appropriate. We view tests such as ours as a precondition for applying such
methods however – one must reject the existence of subjective probabilities
before prompting experts for imprecise probabilities.

Moreover, the existence of ambiguity does not imply ignorance, and should
not be seen as an excuse for inaction. Decision theory provides several tools
for policy analysis when knowledge is ambiguous (Savage, 1954; Resnik, 1987;
Gilboa, 2009; Binmore, 2009). If anything, it is likely that accounting for the
ambiguity in our knowledge recommends stronger mitigation policies than
those based on conventional probabilistic decision tools (Millner et al., 2010;
Lemoine & Traeger, 2012; Woodward & Bishop, 1997). Our method is of course
not restricted to applications in climate science - it applies to any elicitation
exercise and could be valuable in understanding how to use scientific infor-
mation in a variety of policy situations. Including tests for the presence of
ambiguity in future elicitations would provide more faithful representations of
experts’ knowledge and enable us to select policies that are more consistent
with our knowledge of, and attitude towards, uncertainty.

A Methods Summary

Participants were recruited by e-mail and word of mouth over a period of 3 months be-
ginning in December 2010. 42 respondents completed the survey (available in full online
at http://www.climate.websperiment.org). All respondents consented to be identified as
participants, and were informed that their responses would be anonymized. 13 respondents
were removed from the sample as they either stated that they are not familiar with the
literature on climate sensitivity estimation, or were not primarily engaged in climate science
research at the time of the survey.

The 29 experts in our sample were: Gab Abramowitz, James Annan, Kyle Armour,
David Easterling, Seita Emori, John Fasullo, Chris Folland, Chris Forest, Piers Forster,
John Harte, Gabriele Hegerl, Gregory Jones, Reto Knutti, Gerald Meehl, James Murphy,
Falk Niehoerster, Geert Jan van Oldenborgh, John Reilly, Gerard Roe, Ben Sanderson,
Stephen Schwartz, Carolyn Snyder, Andrei Sokolov, Claudia Tebaldi, Simon Tett, Warren
Washington, Andrew Weaver, Rob Wilby, Carl Wunsch. All reported results have been
anonymized.

Each experts’ hypothesized 5th, 50th and 95th percentile of the distribution for S were
initially elicited using standard probabilistic elicitation methods. They then completed four
sets of betting tasks – three on the Climate Problem (one at each of the elicited percentiles
of S), and one on the Ellsberg Problem. Full details of these betting tasks are available in
the Supplementary Information. Participants could move back and forth through the survey
at any time, and had access to help boxes on each screen with reminders about quantity
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definitions and judgmental biases to be aware of when forming their answers. They could
also change their answers at any time. We used data only from those experts who completed
the survey in full. There was no time limit on the survey, and experts were informed that
they should take as much time as they need to form their best judgments. The Ellsberg
Problem was presented at the very end of the survey, so as not to prime participants to
think in terms of ambiguity.
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