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Abstract The frequency and severity of heatwaves is expected to increase as the global climate warms.
We apply crossing theory for the first time to determine heatwave properties solely from the distribution
of daily observations without time-correlation information. We use Central England Temperature
time series to quantify how the simple increased occurrence of higher temperatures makes heatwaves
(consecutive summer days with temperatures exceeding a threshold) more frequent and intense. We find
an overall twofold to threefold increase in heatwave activity since the late 1800's. Week-long heatwaves that
on average return every 5 years were typically below ∼28 ◦C and now typically exceed it. Our analysis takes
as inputs average user-specific heat wave properties. Its output pinpoints the range of temperatures for
which changes in the distribution must be well resolved statistically in order to track how these heatwave
properties are changing. This provides a quantitative benchmark for models used for the attribution of heat
waves.

Plain Language Summary As the climate changes, we can expect to see changes in the
frequency and severity of heatwaves. Heatwaves are defined here as successive days during which the
surface temperature is above a threshold value. A heatwave threshold value that is important for planning
will vary depending on circumstances or geographical location, for the United Kingdom we consider the
building overheating threshold of 28 ◦C, but higher thresholds may be relevant in more equatorial regions.
The Central England Temperature time series is one of the longest continuous records of daily surface
temperature measurements and we use this data to estimate how U.K. heatwaves have changed from
1878 to the present. We find an overall twofold to threefold increase in heatwave activity since the late
1800's. Week-long heatwaves that occur on average every 5 years were typically below about 28 ◦C but now
typically exceed it. Our analysis relies solely on the observations and does not involve large-scale numerical
models. It provides a quantitative verification for models that are used to attribute heatwave activity.

1. Introduction
Heatwaves are one of the most impactful aspects of climate. There is increasing evidence that global warm-
ing is leading to more intense and frequent heatwaves with a corresponding increase in their impact
(Liss et al., 2017; Mora et al., 2017; Pachauri & Meyer, 2014). Definitions of heatwaves vary (Frich et al.,
2002; Perkins & Alexander, 2012), we focus on runs of consecutive days with temperatures exceeding a con-
stant threshold value. They are multiday runs of daily observations at unusually high temperatures that
are found in the tail of the distribution. By definition, these are rare events. Direct statistical quantification
solely from observations of how heatwaves may be changing in time is thus highly uncertain, although com-
parable analysis of model output can be less uncertain due to the ability to generate multiple ensembles
(Perkins-Kirkpatrick & Gibson, 2017).

There are two distinct contributing factors to an increase in heatwave activity. First is a change in atmo-
spheric circulation patterns leading to altered spatiotemporal correlations. Changes in the frequency,
duration, and location of blocking patterns are a prime example of this factor (Barriopedro et al., 2006; Dong
et al., 2008; Garcia-Herrera et al., 2010; Renwick, 1998; Sáez de Adana & Colucci, 2005). Changes in heat-
waves have been studied in relation to this factor by, for instance, identifying links between a warming trend
in the high quantiles of spatially distributed daily summer temperature observations and a modification of
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regional feedbacks and global circulation patterns (Coumou et al., 2018). Such changes are indicated by an
increase in spatially correlated high daily temperatures (Hansen et al., 2012). However, a second, impor-
tant contributing factor to increased heatwave activity is that simply increasing the occurrence of higher
temperatures will in itself imply that heatwaves will be on average longer lasting, more frequent, and more
intense. This will arise, for example, when there is a change in the moments of a given temperature distri-
bution (Cubasch et al., 2013) but requires quantitative knowledge of how the full distribution is changing.
One approach is to use extreme value statistics to model the behavior of the distribution tails (Keellings &
Waylen, 2014).

In this Letter we will quantify how changes in the higher values in the observed distribution of daily tem-
peratures translate into changes in average heatwave properties. Our approach quantifies the changes in
heatwave properties that arise just from changes in the full distribution, before including additional infor-
mation on spatial or temporal correlation. This provides a baseline with which to assess recent heatwave
occurrences direct from the data. The uncertainties are solely those intrinsic to the observations and to the
sampling of the observed distribution and are not dependent on any uncertainties in estimates of spatial
or temporal correlation. Our methodology thus provides a quantitative benchmark for models, essential
for attribution of heatwaves. It provides a quite general framework which takes as input quantitative,
user-relevant heatwave properties and outputs the range of quantiles of the cumulative density function
(cdf) that need to be accurately resolved in data, and in models.

2. Methods
2.1. Crossing Theory
Crossing theory (Cramer & Leadbetter, 1967; Lawrance & Kottegoda, 1977; Rice, 1944; Vanmarcke, 1985;
2010) provides a set of results for stationary random time series that relate the distribution of observations to
the properties of runs above (here, heatwaves) or below a threshold. It has found applications as diverse as
hydrology (Bras & Rodríguez-Iturbe, 1993; Nordin & Rosbjerg, 1970; Rodríguez-Iturbe, 1968) and cosmology
(Coles & Barrow, 1987). While most developments and applications of the theory following Rice (1944) have
required the distribution of observations to be Gaussian, there is a key result, the run-length ratio identity
(Coles & Barrow, 1987; Lawrance & Kottegoda, 1977; Vanmarcke, 2010) for random variables, which does
not require any particular form for the observed distribution, as long as we can meaningfully take averages,
and the other necessary continuity conditions are satisfied by the continuous physical process underlying the
observed discrete time series (Vanmarcke, 1985). Following Lawrance and Kottegoda (1977), we assume that
the observations may be described as a stationary discrete time series of random variables {Xt, t = 1, 2...}
with Xt at time t, and we will consider heat waves as intervals where the time series exceeds a threshold
u > E(Xt). The Xt do not need to be Gaussian distributed, and we assume no special time-structure, that is,
there is no particular form of temporal correlation. The beginning of a heatwave is then an upcrossing of u,
it occurs at time t if Xt − 1 < u and Xt > u and the upcrossing occurs with probability P(Xt − 1 < u,Xt > u).
If the number of upcrossings in time interval of M observations (0,M) is NM(u) then its expectation value is

E{NM(u)} = P(Xt−1 < u,Xt > u)M. (1)

This is the number of heatwaves that occur on average in the time interval of M observations.

The probability of an observation being found above the threshold u is P(Xt > u) and so the mean number
of observations found above u in time interval (0,M) is P(Xt > u)M. This is the total time spent in heatwave
conditions on average in the time interval of M observations. The mean duration of runs of observations
above u, that is, the average duration of a heatwave, is then given by the total time spent in heatwave con-
ditions (on average in time interval M) divided by the number of heatwaves (occurring on average in time
interval M):

𝜏(u) = E{𝜏(u)} =
P(Xt > u)

P(Xt−1 < u,Xt > u)
, (2)

which is a statement of the run-length ratio identity. Now P(Xt > u) = 1 − C(u) where C(X) is the
cumulative density function (cdf) of Xt. For a cdf of daily observations, the mean run duration 𝜏(u) is also
in days.

Now the mean of the number of runs (or heatwaves) that occur in time (0,M) also determines the average
return period for runs that exceed u which is

CHAPMAN ET AL. 1635



Geophysical Research Letters 10.1029/2018GL081004

Figure 1. The JJA daily maxima of the full Central England Temperature time series from 1878 to 2018 is shown as a
time-variation in distribution. Each cdf and pdf is formed from nine consecutive summer seasons (JJA). A cdf and pdf
are then plotted for each year which is at the middle of each 9-year interval for 1882–2014. The cdfs (a) and pdfs (b)
values are indicated as color and are plotted versus temperature (y axis) and time (x axis). The mean is shown in white
on the pdfs and quantiles are indicated on the cdfs.

R̄(u) =
M0

M
M

E{NM(u)}
. (3)

If we have daily observations then time interval M refers to M days. However, the return period is most
usefully expressed in years. M0 then determines the units of return period, so that for an annual average,
M∕M0 = 365 and for a summer seasonal average M∕M0 = 92. We then have

𝜏(u) = R̄(u)[1 − C(u)] M
M0

. (4)

We have verified this relationship using simulated stochastic processes with different time-correlation,
examples of these tests are shown in supporting information Figures S5–S9. The return period and run length
are thus related to each other through the cdf. If we can estimate the value of the cdf of daily temperature
observations at the heat wave threshold temperature u then we can also estimate the average heatwave dura-
tion at a given return period, or alternatively, the average return period of a heatwave of a given duration.
This expression does not contain any information about time correlation that would arise from atmospheric
blocking or other regional scale interactions so it does not determine return periods and run lengths inde-
pendently, or obtain their distributions. Furthermore, it cannot capture correlation between runs in daytime
and nighttime temperatures both rising above thresholds, which is the UK Met Office “Heat Health watch”
heatwave definition. It does however translate observed changes in the distribution of daily temperatures to
changes in average heatwave properties, in the sense of runs of consecutive days above a threshold.
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Figure 2. The cumulative density function formed from the consecutive summer (JJA) seasons for the Central England temperature for years 2006–2014 is
used to relate the length of a run of hot days above a given temperature threshold (heatwave duration) to its return period. We plot (a) run length versus
temperature threshold for given return periods; (b) return period versus temperature threshold for a given run length and (c) return period versus run length at
given threshold temperatures.

2.2. Data and CDF Estimation
We apply this expression to a well-studied data set, the Central England temperature (CET) record (Parker
et al., 1992). The CET has undergone extensive analysis to quantify trends with time and there is evidence
of warming both in the mean value and in the seasonal extremes (Brabson & Palutikof, 2002). We consider
the data since 1878 where daily maxima and minima are known to a precision estimated to be better than
a degree (Parker & Horton, 2005). The daily observed maximum temperature observations for June, July,
August (JJA) for each of nine consecutive years are used to form a cdf; all plots will relate to the central
year. The CET of daily maxima from 1878 to 2018 then gives samples centered on years 1882–2014. Kernel
density estimates (Silverman, 1986) of the cdfs allow them to be evaluated at a specific threshold value. In
the plots the cdfs are sampled at every 0.1◦, the same resolution as the CET. We then have a running kernel
density estimate of the cdf, one for each year that is at the middle of each 9-year sample from 1882–2014,
we plot this in Figure 1 along with the running probability density function (pdf). The choice of the number
(nine) years in each sample is to optimize resolution of the cdf both at the higher quantiles and in time. In
the supporting information we reproduce Figure 1 for samples of 1, 5, and 13 years (see Figures S1–S3).

3. Averaged Heat Wave Properties
Figure 2 is an illustration of how equation (4) and the cdf formed from the consecutive summer (June, July,
August) seasons for the years 2006–2014 relates the average length of a run of hot days above a given tem-
perature threshold (heatwave duration) to its average return period. These plots indicate how the cdf can be
translated into useful information at user-specific temperature thresholds. For example one can read from
the plots that in the summer of 2010 (the central year of the 2006–2014 sample), a 6-day run of consecu-
tive days in which the daily maximum temperature exceeds 28 ◦C, a threshold for overheating of buildings
(Lomas & Porritt, 2017), has on average a return period of 3–4 years. An estimate of the cdf uncertainty is
provided by 95% confidence bounds using the Greenwood (1926) formula, an example of these is shown in
Figure S4. This is then transformed to give a corresponding uncertainty in average return period (at fixed
run length) and run length (at fixed return period). The uncertainties that we will plot in Figures 3 and 4
are those of the observations (Parker & Horton, 2005) and those of the estimated cdf. They linearly combine
to ∼ ±1–2 ◦C.

We now look across time to see how these average heatwave properties have changed over the last 140 years.
We select one of the curves from the center panel of Figure 2, the return period of runs of six consecutive
days where the daily maximum temperature is above a given threshold, and in Figure 3 we plot it for each of
the overlapping nine summer season cdfs which have central years 1882–2014. Values corresponding to the
0.95 and 0.99 quantiles of the cdf of daily observations are indicated in Figure 3 and we can see on Figure 3
that to quantify any changes in the average return periods of heatwaves at user-relevant temperature thresh-
olds (maximum daily T > 25–30 ◦C) and duration (about a week) requires resolving the underlying cdf of
maximum daily temperature observations at and above the 0.95 quantile. A specific, user dependent choice
of heatwave threshold, duration, and return period identifies the region of the cdf which needs to be well
resolved statistically in order to quantify heatwave properties and how they may be changing in time. This
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Figure 3. Average heatwave properties from daily observations across the last 140 years. Data sampled over nine consecutive summer (June, July, August)
seasons centered on each of the years 1882–2014 is used to form cdfs. Equation (1) relates these cdfs to average return periods for runs of six consecutive days
where the daily maximum temperature is above a given threshold. Color indicates the sample central year in the time sequence. (a) All sample center years;
(b) first 66 years; (c) last 66 years. Horizontal lines indicate the cdf 0.99 and 0.95 quantiles.

constrains the minimum sample interval used to form the cdfs as both the number of daily observations
in the sample and the functional form of the cdf, directly translate to an uncertainty which we estimate
empirically as discussed above. In Figure 3 we can see that the curves move progressively to the right with
increasing time to an extent exceeding the estimated ±1–2◦ uncertainty. If we choose the threshold temper-
ature to be 28 ◦C (black vertical line) then the return period of a 6-day heatwave has changed from ∼6–8
to ∼2–4 years over the period from the early 20th century to the early 21st century; it is about two to three
times more frequent on average. In the supporting information we provide companion plots to Figure 3 cor-
responding to Figures 2a and 2c. They all rely on the same underlying cdfs but present the same changes in
different ways. If we focus on a threshold of 28 ◦C, heatwaves with a 5-year return period would have been
on average a week long in the late 1880's, and would now last about 2–3 weeks.

Although the curves move progressively to the right as time increases in Figure 3, it is not a smooth
monotonic trend and there is considerable variability. We can plot the detailed time dynamics at a specific
threshold temperature, return period, and duration and this is shown in Figure 4. Figure 4a plots the cut
through Figure 3a at a threshold of 28 ◦C and duration of 6 days and shows how the return period of these
heatwaves has changed. Figure 4b plots the analogous cut (though Figure S10) at a threshold of 28 ◦C for a

Figure 4. (a) The average return periods for runs of six consecutive days with maximum summer daily temperatures above 28 ◦C. (b) The average duration of
runs of consecutive days with summer maximum daily temperatures above 28 ◦C with average return period of 5 years. (c) The threshold of maximum daily
temperature which is exceeded for six consecutive days on average every 5 years. Data sampled over nine consecutive summer (June, July, August) seasons
centered on each of the years 1882–2014 are used form cdfs. Equation (1) relates these cdfs to average return periods and run lengths where the daily maximum
temperature is above a given threshold. Color indicates the sample central year in the time sequence as in Figure 3. Gray shading indicates uncertainties
estimated as the larger of that from 95% confidence bounds in the underlying cdf estimated using the Greenwood (1926) formula and from an intrinsic ±1 ◦C in
the temperature time series (Parker & Horton, 2005).
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return period of 5 years and shows how the duration of these heatwaves has changed. This quantifies overall
how heatwaves have become more frequent and longer lasting. By fixing the return period and duration as
in Figure 4c we can track the change in overall heatwave intensity, that is, the change in the threshold that
the maximum daily temperature exceeds in each day of the heatwave. A week-long heatwave with an aver-
age return period of 5 years had a threshold temperature in the late 1880's typically below the 28 ◦C value
for overheating of buildings. Now, the heatwave threshold is typically above 28 ◦C so that the threshold for
overheating of buildings is almost always exceeded in each day of the heatwave .

The variability before about 1950 is approximately consistent with the estimated underlying cdf uncertain-
ties. However, large decadal time scale excursions also occur, most notably around 1960–1970 and in the
recent past (the “hiatus”; Stocker et al., 2013). These arise from the time variability in the high quantiles of
the cdf, that can be seen in Figure 1, which do not necessarily simply follow that of the mean. This underlines
the difficulty in perception, based on a few decades in time, of any secular trend in heatwave properties.

4. Conclusions
We have estimated the overall secular changes in summer heatwave average occurrence rates, duration, and
intensity which arise from the observed upward drift in the tail of the distribution of CET daily temperature
observations. These changes imply significant heatwave impact for end users. They were obtained empiri-
cally directly from the data and did not require knowledge of the causes of observed climate change, of trends
in atmospheric greenhouse gases, or nonlinear modeling needed to capture changes in patterns of regional
convection and atmospheric blocking. As we did not use global climate models, instead dealing directly
with observations, our results are interpretative rather than predictive. Both forward prediction and detailed
attribution of heatwaves to anthropogenic forcing require models that can capture the full time dynamics
of the nonlinearities of the system. It is well established that both the mean and the higher moments of
surface temperatures are changing (Klein Tank et al., 2005) such that the length of the longest excursion
above a threshold will increase (Della-Marta et al., 2007). Our method of analysis provides a quite general
framework to take as input quantitative, user-relevant heatwave properties, namely, temperature thresh-
old, average duration, and return time, and provide as output the range of quantiles of the cdf that must be
accurately resolved in data, and in models.

These results were obtained for a single time series. The same method can be applied simultaneously across
many single-station, or spatially gridded, daily temperature observations, for which there are data sets since
the early 1950s. Indeed, maps of time change in the cdf at high quantiles and corresponding temperature
changes (Chapman et al., 2013; Stainforth et al., 2013) translate directly into maps of changes in average
heatwave properties. However, care is needed in using spatial data that has required spatial interpolation as
this can modify the high quantiles of the cdf, upon which we have seen heatwave behavior can depend.
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