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The Lorenz-63 model has been frequently used to inform our understanding of the Earth’s

climate and provide insight for numerical weather and climate prediction. Most studies have

focused on the autonomous (time invariant) model behaviour in which the model’s parameters

are constants. Here, we investigate the properties of the model under time-varying parameters,

providing a closer parallel to the challenges of climate prediction, in which climate forcing varies

with time. Initial condition (IC) ensembles are used to construct frequency distributions of model

variables, and we interpret these distributions as the time-dependent climate of the model.

Results are presented that demonstrate the impact of ICs on the transient behaviour of the model

climate. The location in state space from which an IC ensemble is initiated is shown to signifi-

cantly impact the time it takes for ensembles to converge. The implication for climate prediction

is that the climate may—in parallel with weather forecasting—have states from which its future

behaviour is more, or less, predictable in distribution. Evidence of resonant behaviour and path

dependence is found in model distributions under time varying parameters, demonstrating that

prediction in nonautonomous nonlinear systems can be sensitive to the details of time-dependent

forcing/parameter variations. Single model realisations are shown to be unable to reliably repre-

sent the model’s climate; a result which has implications for how real-world climatic timeseries

from observation are interpreted. The results have significant implications for the design and

interpretation of Global Climate Model experiments. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916789]

Over the past 50 years, insight from research exploring

the behaviour of simple nonlinear systems has been fun-

damental in developing approaches to weather and cli-

mate prediction. The analysis herein utilises the much

studied Lorenz-63 model to understand the potential

behaviour of nonlinear systems, such as the climate,

when subject to time-varying external forcing, such as

variations in atmospheric greenhouse gases or solar out-

put. Our primary aim is to provide insight which can

guide new approaches to climate model experimental

design and thereby to better address the uncertainties

associated with climate change prediction. We use ensem-

bles of simulations to generate distributions which we

refer to as the “climate” of the time-variant Lorenz-63

model. In these ensemble experiments, a model parame-

ter is varied in a number of ways which can be seen as

paralleling both idealised and realistic variations in

external forcing of the real climate system. Our results

demonstrate that predictability of climate distributions

under time varying forcing can be highly sensitive to the

specification of initial states in ensemble simulations. This

is a result which at a superficial level is similar to the

well-known initial condition sensitivity in weather fore-

casting, but with different origins and different

implications for ensemble design. We also demonstrate

the existence of resonant behaviour and a dependence on

the details of the “forcing” trajectory, thereby highlight-

ing further aspects of nonlinear system behaviour with

important implications for climate prediction. Taken to-

gether, our results imply that current approaches to cli-

mate modeling may be at risk of under-sampling key

uncertainties likely to be significant in predicting future

climate.

I. INTRODUCTION

Five decades after Edward Lorenz first encountered

chaos in a low-dimensional model simulating thermal con-

vection,1 the study of chaotic behaviour in nonlinear systems

remains highly relevant across a broad range of scientific dis-

ciplines. Aspects of the climate system are “unquestionably

chaotic.”2 The consequences of this for weather forecasting

are felt in the impact of initial condition (IC) uncertainty on

the particular climatic state at some point in the future. The

consequences for climate forecasting are evident in the com-

bined impact of IC uncertainty and forcing variations on the

future probability distributions of climatic variables; i.e., on

future climate as a distribution.3–5 If there are no forcing var-

iations, then—as one moves from weather forecasting to sea-

sonal, decadal and multi-decadal climate forecasting—these

probability distributions approach those representative of the

stationary climate attractor (if such a thing exists);

a)Electronic mail: jdaron@csag.uct.ac.za
b)Also at UK Met Office, Exeter, United Kingdom.
c)Also at Department of Physics, University of Warwick, Coventry, United

Kingdom and Environmental Change Institute, University of Oxford,

Oxford, United Kingdom.
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uncertainty in a weather forecast becomes the distribution

representative of the stationary system’s variables. IC

ensembles (ICEs) provide a means of studying the process of

“climate prediction” with and without forcing variations, and

are valuable for exploring the transient behaviour of nonau-

tonomous nonlinear systems in general.

The work presented here aims to inform our understand-

ing of the implications of IC uncertainties for climate fore-

casting; uncertainties that are poorly addressed in most

climate modelling experiments. Results are discussed in rela-

tion to the real-world climate system, and models thereof, to

demonstrate the relevance of these issues for climate predic-

tion under transient forcings. They also have implications for

how we characterise the transient behaviour of both nonlin-

ear geophysical systems more generally, and nonautonomous

nonlinear mathematical systems. We explore the role of

macro-initial condition (macro-IC) uncertainty, which is

described as uncertainty in “state variables with relatively

large slowly mixing scales,”6 to provide insight into the

design of climate modeling experiments. Our findings imply

not only a need for much larger IC ensembles than is com-

mon practice today but also that experimental designs should

allow for the likelihood that model based probabilistic pre-

dictions will be macro-IC dependent. The results demon-

strate that under transient changes in forcing, the concept of

a changing climatic attractor is unhelpful because the tran-

sient distributions at a particular forcing value can be very

different to the distributions representative of the attractor at

the same, but unchanging, forcing value.

While the nonlinear systems community typically focus

on the properties of autonomous dynamical systems—whose

equations have no explicit dependence on time,7 increas-

ingly, and particularly in relation to climate research—atten-

tion is being given to nonautonomous dynamical systems

whose equations are time-dependent.3,8,9 Changes in the

external forcings on the climate system (e.g., variability in

the solar constant or changes in albedo or atmospheric green-

house gas concentrations) are inherently time-dependent; the

climate system itself is a nonautonomous dynamical system.

We therefore focus on the behaviour of the nonautonomous

L63 model which is achieved by varying the model’s param-

eters and demonstrating numerically how this impacts its

“climate.”

Before detailing the methodology and experiments con-

ducted, it is useful first to introduce two relevant concepts:

resonance and the kairodic assumption.

Resonance is observed in a wide range of dynamical

systems. It is most commonly used to describe a situation

where a dynamical system oscillates with a greater ampli-

tude when subject to forcing at specific (resonant) frequen-

cies, but its interpretation for nonlinear systems can be

more complicated.10,11 The term stochastic resonance has

been applied to those systems that display resonant behav-

iour as a function of the noise level in a system’s parame-

ter.12 In the L63 model, resonant behaviour has been

demonstrated13–15 and some studies exploring stochastic

resonance in this model have related their results to forcing

variations on the climate system.16,17 More recently,

through studying stochastic resonance, Benzi (2010)18 has

stressed that fast variables should not be ignored in the

study of long-term climate change. None of these studies,

however, have explicitly acknowledged the effects of

resonance on ensemble distributions, which is critical for

understanding transient climate change and thereby

informing climate change adaptation decisions.6 Herein,

we will refer to distributions of model variables from ICEs

as the model’s climate,3 which is, of course, conditioned

on the particular design of the ICE, as will be illustrated

Though rarely acknowledged, the ergodic assumption is

often applied in climate modeling.19 Sprott (2003)20 states:

“the ergodic hypothesis21 asserts that the probability distri-

bution is the same for many iterations of a single orbit (time

average) and for a high-order iteration of many orbits with a

range of random ICs (ensemble average).” The concept

described is useful in model interpretation, although more

usually a system can only be deemed ergodic when consider-

ing its infinite time properties.22,23 To allow for the analysis

of dynamical sytems over finite periods, in this paper we uti-

lise and test the related “kairodic assumption” introduced by

Daron and Stainforth (2013)3 in which “the distribution over

time is [taken as] representative of the distribution of possi-

ble states at an instant.” This encapsulates both the concept

described by Sprott (2003)20 when considering “high order

iterations” and “many orbits,” as well as common practice in

climate science where observational or model distributions

over a fixed period of time, often 30 years,24–26 are taken to

represent the system’s climate within that period.

We begin, in Sec. II, by presenting the L63 model’s cli-

mate distributions under fixed parameters using both a single

trajectory and IC ensembles. After an initial qualitative anal-

ysis, the impact of simulation length on the two approaches

is quantified using the Jensen-Shannon divergence (JSD).27

The impact of macro-IC uncertainty is addressed in Sec. III

by investigating the rates of convergence for model ensem-

bles originating in different regions of the model’s state

space. In Sec. IV, the behaviour of the model with various

values of the parameter q is presented. This provides the

context for Secs. V and VI, which show results from experi-

ments with periodic and nonperiodic fluctuations in q,

respectively. Finally, Sec. VII discusses the implications of

our results for climate model experimental design and the

interpretation of climate model output.

II. THE L63 CLIMATE

A. L63 model

The L63 model consists of three ordinary differential

equations which describe thermal convection in a fluid:

dX

dt
¼ r Y � Xð Þ; (1)

dY

dt
¼ X q� Zð Þ � Y; (2)

dZ

dt
¼ XY � bZ: (3)

043103-2 J. D. Daron and D. A. Stainforth Chaos 25, 043103 (2015)
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X, Y, and Z are the model variables, r is the Prandtl number,

q is the Rayleigh number, and b is a geometric factor.1,28 We

begin by considering parameters with values: r¼ 10, q¼ 28,

and b ¼ 8
3
, as in Lorenz (1963).1 Model simulations are per-

formed using a fourth-order Runge-Kutta integration scheme

with a time step, s ¼ 0:001 Lorenz Time Units (LTUs).

The L63 model evolves with two characteristic time

scales: an oscillation time around a regime centroid and a

residence time within a regime.29 An oscillation typically

occurs on a time scale of �1 LTU while the residence time,

the time between regime transitions, varies and is subject to

chaos such that the distance in state space between trajecto-

ries with similar ICs initially diverges on average exponen-

tially with time;1,30 eventually, the growth rate decreases

until the size of the average separation is equal to the dis-

tance between two randomly selected states. Uncertainty in

the initial state limits deterministic predictability, but one

can estimate the model variable probability distributions at

any point in the future using an IC ensemble conditioned on

IC uncertainty. In relating this work to models of climate,

such IC uncertainty can be considered as representing obser-

vational uncertainty when initialising a perfect model of a

real-world system.

Two methods are available for numerically estimating

the distributions of the L63 variables on the model’s attractor

(in our terminology these distributions are the stationary cli-

mate of the model for each variable). The first option uses a

single realisation of the model run for a long period of time

(relative to the dynamic time scales of the model) to generate

a frequency distribution for each model variable. In the sec-

ond, a large IC ensemble is run for a fixed length of time,

and the final states of each member are used to generate the

frequency distributions. To inform the design of modelling

experiments in climate-like problems, an important question

is whether these two methods produce the same results (i.e.,

is the kairodic assumption3 valid for fixed parameter values

and if so on what timescales). Our starting point is therefore

to make this assessment.

B. Convergence of single trajectory distributions

Fig. 1 shows the frequency distributions for Z from a sin-

gle model realisation but generated from increasing length

simulation periods—1 LTU to 10 000 LTUs; the correspond-

ing distributions for the Y and Z variables are given in the

supplementary material (Ref. 31, Figs. S1 and S2). The single

model trajectory was initiated from a point close to (but not

on) the attractor: the chosen IC is ðX; Y; ZÞ ¼ ð1:0; 1:0; 25:0Þ,
a state near the saddle point of the attractor.

Fig. 1(a) shows the distribution of model states over the

first LTU of the model simulation. The distribution is highly

asymmetric, but as longer periods are considered in the con-

struction of the distributions this asymmetry decreases and

the distributions become more similar. The distribution after

10 000 LTUs (Fig. 1(i)) is relatively smooth with a primary

peak at Z � 18 and a secondary peak at Z � 34. The distri-

butions in X and Y show convergence on similar timescales

(Ref. 31, Figs. S1 and S2).

C. Convergence of initial condition ensemble
distributions

To generate IC ensemble distributions, we take a

100 000 member ICE with ICs spaced evenly along a one-

dimensional transect2 Xl, Yl, Zl ¼ ð�20;�25; 1Þ to Xh, Yh,

Zh¼ (20, 25, 40) through the region of model state space

occupied by the attractor. The ensemble is run for 1000

LTUs. The distribution of Z across the ensemble at specific

time instants in the simulation period are shown in Fig. 2;

corresponding distributions for X and Y are provided in the

supplementary material (Ref. 31, Figs. S3 and S4). Fig. 1(i)

closely resembles the ensemble distribution shown in Fig.

2(i) suggesting that the use of the kairodic assumption is

valid in the L63 model with fixed parameters; for the values

used here. The distributions are, however, clearly different.

One reason is the size of the ensemble. While a 100000

member IC ensemble would be considered very large in a

climate modelling context, the number of individual data

points is two orders of magnitude smaller than the 10 million

data points that constitute the distribution given in Fig. 1(i).

It might also be that a 1000 LTU integration period is still

too short for the ensemble members to represent IC-

independent samples of the attractor. Whether or not this is

the case is addressed in Sec. II D.

D. Convergence towards the model climate

To facilitate the evaluation of the difference between

the distributions using the two methods, and the rate at

which each method converges to a stationary climate, we

take the 100 000 member IC distributions after 1000 LTUs

as “standard” distributions representative of the L63 mod-

el’s stationary climate. For reference, Fig. 3 shows these

distributions; Fig. 3(c) is a reproduction of Fig. 2(i). The

ensemble distribution is used for this purpose for consis-

tency with later analysis under time varying parameters

where the single trajectory distribution would not be a rele-

vant option.

The simulation time for frequency distributions

extracted from a single trajectory to approach the standard

distributions might be expected to be longer than that for an

IC ensemble because a single trajectory can remain in one

regime for a long time but it is less likely that a large fraction

of an ensemble will do the same. This is indeed the case, as

is evident by comparing Fig. 1(e) to Fig. 2(g). Both show fre-

quency distributions after a 100 LTU and have the same

number of constituent data points, but the distribution from

the single trajectory (Fig. 1(e)) is clearly different from the

standard stationary climate distribution (Fig. 3(c)) while the

ensemble distribution (Fig. 2(g)) is more similar.

To make quantitative comparisons between these distri-

butions, we use the Jensen-Shannon Divergence (JSD);27 a

variation on relative entropy, also known as the Kullback-

Leibler divergence.32 Like relative entropy, the JSD provides

a measure of similarity between two probability distributions.

Unlike relative entropy, the JSD always produces a finite

value making it preferable in this study where the distributions

we compare are sometimes non-overlapping. For two discrete

probability distributions Q and P, the JSD is given by

043103-3 J. D. Daron and D. A. Stainforth Chaos 25, 043103 (2015)
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equations (4) to (7) in which Eq. (5) and Eq. (6) define the

relative entropy, D, between distributions P and M, and Q and

M, respectively.

JSD P k Qð Þ ¼ 1

2
D P k Mð Þ þ 1

2
D Q k Mð Þ; (4)

D P k Mð Þ ¼
X

i

ln
P ið Þ
M ið Þ

 !
P ið Þ; (5)

D Q k Mð Þ ¼
X

i

ln
Q ið Þ
M ið Þ

 !
Q ið Þ; (6)

M ¼ 1

2
Pþ Qð Þ: (7)

The JSD between two 10 000 member random samples

of the standard stationary climate distributions is calculated

and the process repeated 1000 times to produce a distribu-

tion of JSD values (see Table I). The samples are taken

from the same population so the JSD values reflect

differences resulting only from the size of the samples. This

provides indicative values to help in the interpretation of

model distribution comparisons. When comparing different

evaluations of the standard stationary climate distributions,

a JSD value below two standard deviations greater than the

mean (i.e., JSD(X)< 1:78� 10�3, JSD(Y)< 2:33� 10�3,

and JSD(Z)< 2:09� 10�3) indicates that the underlying

distributions cannot be identified as different at above the

97% confidence level. If the distributions cannot be confi-

dently identified as different, then we consider them to be

indistinguishable and describe them as having converged.

Similarly, if they can be confidently identified as different,

then they are considered to be distinguishable and not to

have converged.

In Fig. 4, the standard stationary climate distributions

(Fig. 3) are compared to the distributions resulting from both

the single trajectory method and the IC ensemble method. As

expected, the ensemble distributions converge more rapidly

than the single trajectory distributions towards the standard

stationary climate distribtutions. After 50 LTUs, the

FIG. 1. Normalised frequency distributions of the Z variable from a single trajectory of the L63 model over increasing time periods; ICs

ðX; Y;ZÞ ¼ ð1:0; 1:0; 25:0Þ. The x-axis corresponds to the Z variable, and the y-axis corresponds to the frequency of states per bin; bin width¼ 0.2. Some den-

sity in panels (a)–(c) extends beyond the scale.

043103-4 J. D. Daron and D. A. Stainforth Chaos 25, 043103 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

81.155.213.68 On: Tue, 14 Apr 2015 08:33:39



ensemble distributions have converged while the single tra-

jectory method requires an additional 350 LTUs before the

same can be said of them. The single trajectory convergence

is also less smooth, presumably due to long residence times

within the regimes of the attractor.

III. MACRO-INITIAL CONDITION MEMORY IN THE L63
MODEL

Having demonstrated that the kairodic assumption is

valid for a sufficiently large number of iterations (that an IC

ensemble and a single trajectory converge towards the same

FIG. 2. Normalised frequency distributions of the Z variable from a 100 000 member IC ensemble with ICs spread evenly along a transect, from ðXl; Yl; ZlÞ
¼ ð�20;�25; 1Þ to ðXh; Yh; ZhÞ ¼ ð20; 25; 40Þ. Distributions show the states of each ensemble member at a given time instant in the simulation period. The

x-axis corresponds to the Z variable, and the y-axis corresponds to the frequency of ensemble members per bin; bin width¼ 0.2. Some density in panels (a)–(c)

extends beyond the scale.

FIG. 3. Normalised frequency distributions for the L63 model variables, from a 100 000 member IC ensemble with ICs spread evenly along a transect:

ðXl;Yl; ZlÞ ¼ ð�20;�25; 1Þ to ðXh;Yh; ZhÞ ¼ ð20; 25; 40Þ. The distributions show the states of each ensemble member at 1000 LTUs in the simulation period.

The x-axis is given in each panel title, and y-axis as in Fig. 2. These distributions are referred to throughout as the “standard” distributions representative of the

L63 model’s stationary climate.
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standard stationary climate), we address the question of

whether the choice of ICs affects the rate of convergence.

For climate and environmental prediction, if we had a

perfect model of our system, then we would want to initiate

ensembles from states consistent with observations of reality.

Indeed, this is already done with today’s models; a subset of

the CMIP533 GCM experiments was initiated with ICs which

reflect observations of the recent climatic state, specifically in

respect of the oceans. Yet, even with the best conceivable

observing system, the exact initial state is of course subject to

uncertainty, but an ICE can be constructed in which the ICs

reflect the remaining uncertainty at the smallest scales (micro-

IC uncertainty6). Large scale differences in the state of the

system (e.g., states of the thermohaline circulation, El Nino

Southern Oscillation, or stratospheric circulation patterns)

represent substantially different initial states (macro-IC6);

some may retain information and therefore a degree of pre-

dictability for longer than others. These states may or may

not be distinguishable with current observing systems but are

in principle distinguishable with potentially achievable

observing systems.

To explore the impact of macro-IC uncertainty in the

L63 model, 10 000 member IC ensembles are initiated from

four different non-overlapping regions of model state space,

illustrated in Fig. 5. The time it takes for the different ICEs

to converge provides a measure of the memory in distribu-
tion of the macro-ICs and demonstrates the impact of IC en-

semble location on climate predictability within the model.

We use the term memory to refer to the length of time for

which a distribution remains distinguishable (see Sec. II D)

from the standard stationary climate distribution. When the

ensemble distributions have converged to the standard sta-

tionary climate distributions (see Fig. 3), the memory of IC

ensemble location has been lost. This approach builds on

earlier studies related to short- and medium-term weather

prediction29,34,35 by providing a climate distribution perspec-

tive to “limits of predictability.” In doing so, it facilitates its

further development to nonautonomous systems in Secs. V

and VI.

Fig. 6 shows that each of the four IC ensembles con-

verge towards the standard stationary climate distributions,

with memory of the macro-ICs lost on a timescale of 30–40

LTUs. This is slightly faster than in the ICE of Sec. II A (see

Fig. 4) because the former ensemble assumed little knowl-

edge of the attractor so many members were initiated far

from it; the parallel in climate modelling would be to initiate

a model with little knowledge of what states would be physi-

cally consistent with the model. After 5 LTUs there remain

large differences between the four ensemble distributions;

the JSD values range from JSD � 0:14 (IC 2 in Z) to

JSD � 0:44 (IC 2 in X). This indicates memory of the

macro-ICs and therefore a degree of predictability. Even

after 20 LTUs, there remain distinguishable differences

from the standard stationary climate. Furthermore, some IC

ensembles converge faster than others for some variables—

IC4 converges towards the standard stationary climate faster

than the other ensembles for the X and Y variables. This is

TABLE I. Statistics of JSD values (�10�3) for Lorenz-63 values taken from

1000 comparisons of two randomly drawn 10 000 member samples from the

standard climate distributions.

JSD statistic X (�10�3) Y (�10�3) Z (�10�3)

Minium 0.66 0.73 0.78

Mean 1.24 1.59 1.49

Maximum 2.49 2.88 2.87

Standard deviation 0.27 0.32 0.30

FIG. 4. JSD results showing the comparisons between the standard climate distributions and the distributions from single trajectory distributions and IC ensem-

bles for each of the L63 model variables under fixed (conventional) parameter conditions.

FIG. 5. Single trajectory for a 50 LTU simulation of the L63 model with ICs

ðX;Y; ZÞ ¼ ð1:0; 1:0; 25:0Þ (dashed line), and the starting locations for four

10 000 member IC ensembles (coloured dots). Members of the ensembles

are generated by addition of a perturbation from a central value in all dimen-

sions X, Y, and Z. The perturbations are samples from a Gaussian distribu-

tion with standard deviation 0.2. The central values for the IC ensembles are

(from left to right): 1—black cluster ð�17:228;�22:383; 34:031Þ; 2—red

cluster ð�2:520; 5:867; 31:340Þ; 3—green cluster ð6:683; 9:593; 20:451Þ;
and 4—blue cluster ð15:668; 15:564; 36:882Þ.
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likely because the initial location of the IC4 ensemble means

that trajectories approach the saddle point of the attractor

more quickly than those initiating from the other ensembles,

allowing the ensemble to spread across the attractor state

space more quickly.

IV. VARYING THE PARAMETER q

So far the focus has been on the role of ICs in climate

prediction in a stationary system. The most valuable lessons

from L63 for climate prediction, however, may come from

its behaviour with time-dependent parameters; a nonautono-

mous system. Introducing a time-dependence to one of the

L63 model parameters can be considered a parallel to varia-

tions in forcings on the real world climate system such as

that resulting from changes in solar energy input or changing

concentrations of atmospheric greenhouse gas concentra-

tions. It also provides insight into the behaviour of a nonlin-

ear dynamical system when subject to varying forcings.

Before taking that step, however, it is useful to consider how

the attractor and the stationary climate of the system, varies

as parameters change.

The L63 model is a simplification of Rayleigh-Bernard

thermal fluid convection between two vertically displaced

plates of unequal temperatures. An increase in the tempera-

ture difference between the plates (represented by q) leads to

an increase in the heat flux (denoted by Z). The impact of

altering q has been likened to the impact of changes in the

meridional temperature gradient on the equator to pole heat

flux.35 We therefore choose to focus on q when exploring

parametric variations.

In the L63 system when q < 1, all trajectories propagate

towards the origin (0, 0, 0), which is globally attracting.36

For q � 1, the origin becomes unstable and two new stable

fixed points emerge at coordinates C6¼ð6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðq� 1Þ

p
;

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðq� 1Þ

p
; q� 1Þ. At the value q ¼ 24:74 (qH), a Hopf

bifurcation occurs. For values of q > qH, the fixed points

located at C6 become unstable and the system becomes cha-

otic.37 Since chaos is considered an inherent part of the cli-

mate system,2 we choose to focus on the climate of the L63

model when q > qH.

Figure 7 shows frequency distributions of the Z variable

for different fixed values of q, determined from 10 000 mem-

ber IC ensembles after a simulation period of 100 LTUs. As

q increases from q¼ 25 to q¼ 31, there is a shift in the dis-

tribution towards higher values of Z; the maximum value of

Z increases from Zmax¼ 41.0 to Zmax¼ 50.9, the mean value

increases from �Z ¼ 20:5 to �Z ¼ 26:4 while the minimum

value shows relatively little change, moving from Zmin¼ 2.5

to Zmin¼ 3.4. As the parameter q increases, the range in Z
increases and the peaks become less pronounced (whilst

shifting to higher values), but the general shape of the distri-

bution is preserved. With this information as context, we

now proceed to investigate the behaviour of the L63 model

under fluctuating parameter conditions.

V. PERIODIC OSCILLATIONS IN q

A. Impact of periodic forcing variations on the L63
model climate

First, we present the behaviour of the L63 model when

subject to smoothly varying periodic fluctuations in q; in

Sec. VI, nonperiodic variations are addressed. Perturbations

are added to a reference value, q0, in the form of a sinusoidal

time series:

qðtÞ ¼ q0 þ Aðsin 2pftÞ; (8)

where A is the wave amplitude, t represents time (units

LTU), and f is the frequency of the wave (units LTU�1).

A range of frequencies (0:1 � f � 10) are investigated,

and q0 is fixed at q0 ¼ 28 with A¼ 3 so that q oscillates

between 25 and 31; the range presented in Sec. IV. For each

value of f, a 10 000 member IC ensemble is run using initial

values sampled from across the stationary, q0 ¼ 28 attractor

(the states are taken from those used in the construction of

the standard stationary climate distributions—Fig. 3). Fig. 8

shows the impact of periodic variations in q on the distribu-

tions after 40 LTU. For all frequencies studied, q¼ 28 after

40 LTU.

When f¼ 0, the ensemble distribution (Fig. 8(a)) is, by

design, similar to the standard stationary climate distribution

shown in Fig. 3(c) (note different y-axis scale), albeit less

smooth because of the smaller number of ensemble mem-

bers. For a low frequency oscillation, f¼ 0.1, the distribution

(Fig. 8(b)) is not substantially altered. For relatively high

frequency oscillations (e.g., when f¼ 10) the distribution

(Fig. 8(f)) is also similar to the standard climate distribution.

At such frequencies, the rapid perturbations to q have little

FIG. 6. JSD results showing the comparisons between IC ensemble distributions from IC locations shown in Fig. 5, to the distributions resulting from an IC en-

semble with ICs taken from the standard distributions, at given time intervals for fixed parameter values.
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impact and the model behaves in a similar way to that

observed for the fixed parameter q0 ¼ 28. When f¼ 1, f¼ 3,

and to a lesser extent when f¼ 5, however, the distributions

are substantially different to the standard stationary climate

distributions. At f¼ 1, q oscillates on a similar time scale to

the attractor regimes’ orbiting frequency. The model appears

to be resonating as a result of the fluctuations in q. This

resonance leads to dramatic changes in the distributions of

the model variables, the model’s climate.

How the distributions vary in time is shown in Fig. 9 in

terms of their difference from the standard stationary climate

distributions. The greatest differences are observed when

f¼ 1, but they are also substantial when f¼ 3, particularly in

the Z variable. For f¼ 0.1 and f¼ 10, the differences are

FIG. 7. Normalised frequency distributions for the Z variable from a 10 000 member IC ensemble after 100 LTUs, for different values of q. The IC ensembles

are initiated with ICs taken from the first 10 000 members of the standard climate distributions for q¼ 28, shown in Fig. 3. The x-axis corresponds to the vari-

able Z, and y-axis as in Fig. 2.

FIG. 8. Normalised frequency distributions of Z for a 10 000 member IC ensemble after a 40 LTU model run for given values of f. ICs extracted as in Fig. 7,

and y-axis as in Fig. 2. Some density in panel (d) extends beyond the scale.
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small except in the Z variable for f¼ 0.1. When f¼ 0.1, the

distributions themselves oscillate, tracking the distributions

representative of the fixed value of q at each point in time

which returns to q¼ 28 every 5 LTU. This is most evident in

the Z variable (Fig. 9(c)).

B. The kairodic assumption and periodic variations

In terms of methods to quantify the behaviour of nonlin-

ear dynamical systems, it is relevant to ask whether the

kairodic assumption holds under periodic fluctuations in q.

That is to say, can the model’s climate be quantified equally

well by a long single realisation and a somewhat shorter IC

ensemble? The answer is yes—for the parameter variations

studied here, and with some conditions.

To reflect the climate of the oscillating system, we com-

pare ensembles from a single trajectory with ensemble distri-

butions constructed from an entire cycle in q rather than at a

specific instant in time. We focus on the f¼ 1 case in which

the impact of the oscillations is greatest. Ensemble distribu-

tions are extracted from the last oscillation in q over the 40

LTU model simulations used to construct Fig. 8 (i.e., from

39 to 40 LTUs). Over one cycle at f¼ 1, the 10 000 member

ensemble generates a distribution containing 10 million data

points. To produce equivalent size distributions from a single

trajectory, the model is run for 10 000 LTUs, and states are

extracted at each time step. The resulting single trajectory

and IC ensemble distributions are shown in Fig. 10. The two

sets of distributions appear to be almost identical; the JSD

values between them are<0.001. It is very unlikely that they

could be confidently distinguished as samples from different

underlying distributions. Thus, even with a sinusoidal time-

varying parameter q, shown to induce resonant behaviour in

the model, the kairodic assumption is still effective to esti-

mate the model’s climate distributions over one cycle for

this model setup.

FIG. 9. JSD results showing comparisons between the ensemble distributions when f¼ 0 (i.e., q is fixed at q¼ 28) and the ensemble distributions for other val-

ues of f for each of the L63 model variables subject to periodic variations in q.

FIG. 10. Normalised frequency distributions for the L63 model when f¼ 1. Panels (a)–(c) correspond to single trajectory distributions (ST) for a 10 000 LTU

model simulation and panels (d)–(f) correspond to IC ensemble distributions (Ens) extracted from all time steps in the last LTU of a 40 LTU model simulation

(with ICs taken from the standard climate distributions). Y-axis as in Fig. 2.
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It should be emphasised that the kairodic assumption is

only effective here when the periodicity is appropriately

accounted for. The difference between Fig. 8(c) and Fig.

10(f) demonstrates that the kairodic assumption fails when

considering the distribution at a particular point in time, but

the above analysis demonstrates that it can be applied when

the ensemble distribution is calculated over a cycle. It is also

expected to be appropriate if the single realisation was

sampled only at the same point in the cycle as that used to

construct an ensemble distribution.

VI. NONPERIODIC FLUCTUATIONS IN q

A. Introducing nonperiodicity

In reality, the climate system, and most environmental

systems, is not subject to simple regular periodic forcing but

rather to a combination of forcings at different frequencies.

How would such nonperiodic variations affect the climate of

the L63 model? To study this, a nonperiodic time series in q
is generated as follows:

w tð Þ ¼ A
1

3
sin 2pfitð Þ þ 1

3
sin

ffiffiffi
3
p

fit
� �

þ 1

3
sin

ffiffiffiffiffi
17
p

fit
� �� �

;

(9)

qðtÞ ¼ q0 þ wðtÞ; (10)

where A is the wave amplitude, t represents time, and fi is a

parameter used to simultaneously adjust the frequencies of

the three component waves (units LTU�1). The three sine

wave frequency multipliers are chosen as 2p;
ffiffiffi
3
p

and
ffiffiffiffiffi
17
p

so that the wave is both nonperiodic and non-repeating over

long simulations. Fig. 11 shows the time series of q over 20

LTUs, when A¼ 3 and fi¼ 1.

B. Impact of nonperiodic forcing variations on the L63
model climate

As in Sec. V 10 000 member IC ensembles are run for

40 LTUs, but this time with nonperiodic variations in q.

When the fluctuations are slow or fast, the distributions for Z
at 40 LTU (Figs. 12(a) and 12(f)) closely resemble the stand-

ard stationary climate distributions as they did in the periodic

case. For intermediate frequencies of the parameter fluctua-

tions, the distributions differ substantially from the standard

stationary climate distributions (e.g., Fig. 12(c)). Because q
varies nonperiodically, the value of q is different after 40

LTUs for each different value of fi. One might therefore

expect some differences between the distributions. As in the

periodic case, however, the variation in the shape of the dis-

tributions is much greater than that seen in the distributions

FIG. 11. Time series of fluctuations in q over 20 LTUs; A¼ 3, fi¼ 1 accord-

ing to Eq. (10).

FIG. 12. Normalised frequency distributions of Z for a 10 000 member IC ensemble after a 40 LTU model run for given values of fi. ICs are taken from the first

10 000 members of the standard climate distributions and y-axis as in Fig. 2.
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representative of the fixed parameter attractors for q between

q¼ 25 and q¼ 31 (Fig. 7).

The distributions vary greatly in time, as shown by the

variability in the JSD comparison with the standard station-

ary climate distributions (Fig. 13). The largest differences

occur at fi¼ 3 and fi¼ 5 when some of the frequencies of the

nonperiodic forcing are close to the frequency of the orbit

oscillations of the model trajectories; we therefore infer the

likely presence of resonance. The JSD values are lower

when fi¼ 1 and fi¼ 10, but there are, nevertheless, substan-

tial differences in the distributions. The time series for Z
when fi ¼ 0:1 (Fig. 13(c)) shows a similar effect to that seen

in the periodic case where the distribution follows variations

in q; the highest JSD values correspond to the peaks and

troughs in q.

C. Path dependence in the L63 model with
nonperiodic forcings

The above analysis demonstrates that resonance is an

important factor in determining the climate distributions of

the L63 model under periodic and nonperiodic variations in

q. A further question is whether path dependence signifi-

cantly influences the model’s climate distributions—i.e., to

what extent do the ensemble distributions depend on the

forcing history? To examine this question, model climate

distributions are examined for two “forcing” time series’ in

q. One time series is the inverse of the other; the time series

for q is inverted by multiplying wðtÞ by �1. The model cli-

mate distributions are extracted at time instants when the

fluctuating parameter q returns to the reference value

q ¼ q0 ¼ 28; this occurs, by design, at the same time in both

time series. The corresponding IC ensemble distributions

from the original and the inverted timeseries are shown in

Fig. 14. They are substantially different. These differences

imply that the L63 model climate is not only sensitive to the

frequency of fluctuations in q but also to the specific time se-

ries in q; i.e., the “forcing” pathway.

D. Implications for the kairodic assumption

The path dependence of the IC ensemble distributions

indicates that the kairodic assumption cannot be applied over

long periods; the IC ensemble frequency distributions at an

instant will be different from the frequency distributions

over a long time interval of a single model trajectory, as was

also the case under periodic variations at some frequencies.

Could the kairodic assumption nevertheless be applied over

FIG. 13. JSD results showing comparisons between the ensemble distributions when fi¼ 0 (such that q is fixed at q¼ 28) and the ensemble distributions for

other values of fi for each of the L63 model variables subject to nonperiodic variations in q.

FIG. 14. Normalised frequency distributions for a 10 000 member IC ensemble at given time instants when (a)–(d) fi¼ 5 and (e)–(f) fi¼ 5 but the time series in

q is inverted. The x-axis corresponds to the Z variable and y-axis as in Fig. 2. Some density in panels (b)–(e) extend beyond the scale.
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shorter periods? In the light of Fig. 14, one would expect

not but this is such a commonly applied method in the analy-

sis of climate and climate model timeseries5,26,38,39 that it is

worth, nevertheless, presenting results from such an

approach in the nonperiodic L63 model.

In parallel with the analysis of climate timeseries, a sin-

gle realisation is used to construct frequency distributions for

time intervals centred on specific points in time. A single

member of the ensemble, used to produce Fig. 14 with the

non-inverted timeseries for q, is used and frequency distribu-

tions generated for 10 LTU time intervals centred on the

time instants presented in Fig. 14. For example, the time

interval centred on 8.819 LTUs (see Figs. 14(a) and 14(e))

includes all states from 3.820 to 13.819 LTUs.

The single trajectory distributions (Fig. 15) are substan-

tially different to the corresponding IC ensemble climate dis-

tributions (Figs. 14(a)–14(d)) at an instant, indicating the

failure of the kairodic assumption. If the time intervals were

made gradually shorter, we would expect the single trajec-

tory data to, at some point, begin to be drawn from a distri-

bution which is approaching that of the IC ensemble, but

reducing the number of data points will likely result in it still

being a poor representation of the instantaneous climate.

E. Convergence of model ensembles for nonperiodic
forcing in q

In Sec. III, the memory of the L63 model with regard to

macro-IC uncertainty was investigated, and it was demon-

strated that alternative IC ensemble distributions, originating

near different parts of the attractor, converge towards a

common distribution for fixed parameter conditions. It is not

clear, however, whether IC ensembles originating in differ-

ent regions of model state space will converge at all under

periodic or non-periodic variations in q. Furthermore, if the

ensembles do converge, how is the rate of convergence

affected?

Memory of macro-ICs in the L63 model subject to non-

periodic forcing is investigated with 10 000 member IC

ensembles originating from the same four sets of ICs (Fig. 5)

as used in the fixed parameter case but applying nonperiodic

variations in q with frequency parameter fi¼ 5. Rather than

comparing the distributions to the standard stationary climate

distributions, we compare them to the time varying ensemble

distributions for fi¼ 5 which were presented above and

which were initialised from 10 000 ICs randomly distributed

across the fixed q¼ 28 attractor. Fig. 16 shows the time vari-

ation of this comparison.

The first point to note is that all four ensembles con-

verge to the same time varying distribution (Fig. 16). Macro-

IC uncertainty does not in this case inhibit the long-term pre-

dictability of the model climate distributions when subject to

nonperiodic fluctuations in q; the model and the “forcing”

timeseries for q is sufficient to constrain the evolving distri-

bution after some initial relaxation period. However, as

observed for fixed parameters, the initial location of the IC

ensemble dictates how rapidly the different ensembles con-

verge; after 5 LTUs, the IC 1 ensemble remains more dissim-

ilar to the reference distributions than the other ensembles. It

is also worth noting that the rate of convergence is faster

than in the fixed parameter case; the ensembles converge af-

ter only 20 LTUs.

FIG. 15. Normalised frequency distributions for a single trajectory with ICs ðX0; Y0; Z0Þ ¼ ð0:62;�0:98; 21:93Þ, when fi¼ 5 over 10 LTU intervals centred on:

(a) t¼ 8.819 LTUs; (b) t¼ 18.721 LTUs; (c) t¼ 25.127 LTUs; (d) t¼ 36.271 LTUs. The x-axis corresponds to the Z variable and y-axis as in Fig. 2.

FIG. 16. JSD results showing the comparisons between IC ensemble distributions, from IC locations shown in Fig. 5 to the distributions resulting from an IC

ensemble, with ICs extracted from the first 10 000 members of the standard climate distributions, at given time instants. In all model runs, q varies according

to Eq. (10) with a wave frequency, fi ¼ 5LTU�1.
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These results may, however, be specific to the particular

model setup studied here. Different nonlinear systems and

possibly even oscillations involving different regions of the

L63 phase space, macro-ICs, and periodic or non-periodic

frequencies could potentially respond differently, possibly

not converging at all.

VII. DISCUSSION

The output from experiments conducted on low-

dimensional idealised models, such as the L63 model, are

inevitably limited in their relevance to higher dimensional

systems. One cannot expect the results described here to gen-

eralise in any specific way to higher-order climate models,

let alone the real climate system. However, in exploring the

rich dynamics of the L63 model, a better conceptual under-

standing of variability and change in complex nonlinear sys-

tems can be gained. This can help inform the way in which

climate model experiments are designed and provides insight

to guide the interpretation of the output from complex cli-

mate models.

In reality, there are multiple internal and external forc-

ings with differing degrees of periodicity which exert an

influence on the dynamic evolution of the climate sys-

tem.40–42 The cumulative effects of these individual compo-

nents lead to aperiodic forcing time series. When the L63

model is subject to nonperiodic variations in q, as shown in

Sec. VI, both resonance and path dependence are shown to

be important factors in determining the climate model en-

semble distributions. In guiding the design of climate model

experiments to explore climatic uncertainties, this work sug-

gests that it is important to assess the potential for resonance

and hysteresis to alter the shape of climate variable

distributions.

In Secs. II D and V B, it is shown that the kairodic

assumption holds for fixed and periodic (sinusoidal) varia-

tions in q for sufficiently long model realisations. In the peri-

odic case, however, either the ensemble distributions must

represent a complete cycle or the single trajectory must only

be sampled at the same point in the cycle as the ensemble.

The parallel in climate modelling is that under stationary

conditions, distributions over annual or diurnal cycles, or for

points in those cycles, could be derivable from either single

long simulations or from shorter ensembles.

However, in Sec. VI C, the kairodic assumption is

shown to fail when the L63 model is subject to nonperiodic

parameter variations. The parallel in climate science here

relates to the wide range of different forcing variations expe-

rienced by the system on a range of timescales. The implica-

tion is that single realisations, or even small IC ensembles,

of climate models may be unable to provide distributions

which describe the model’s climate at a point in time, or

over the annual cycle or parts thereof (e.g., seasonal distribu-

tions); that is to say, distributions constructed over multiple

years may substantially misrepresent those representative of

a particular year.

These results have implications for the climate model-

ling community. Because of computational limitations, cli-

mate model simulations are rarely run with more than a

handful of IC members.33 When utilising climate model in-

formation to inform impact models (e.g., hydrological mod-

els), the kairodic assumption is therefore pervasive. If the

behaviour exhibited in the L63 model was to be observed in

more complex climate models, then the output of climate sta-

tistics based on single model realisations or small ensembles

would be misleading for both model interpretation and as the

basis for model derived predictions.

The memory of macro-IC uncertainty in the L63 model

has also been explored. In the regions of parameter space

explored here, convergence of IC ensembles is observed

despite nonperiodic variations in the parameter q.

Furthermore, the time period exhibiting memory of the IC

location appears to be reduced in the case of parametric

variations.
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