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Abstract
Wedemonstrate how the fundamental timescales of anthropogenic climate change limit the
identification of societally relevant aspects of changes in precipitation.We show that it is nevertheless
possible to extract, solely fromobservations, some confident quantified assessments of change at
certain thresholds and locations.Maps of such changes, for a variety of hydrologically-relevant,
threshold-dependentmetrics, are presented. In places in Scotland, for instance, the total precipitation
on heavy rainfall days inwinter has increased bymore than 50%, but only in some locations has this
been accompanied by a substantial increase in total seasonal precipitation; an important distinction
forwater and landmanagement. These results are important for the presentation of scientific data by
climate services, as a benchmark requirement formodels which are used to provide projections on
local scales, and for process-based climate and impacts research to understand localmodulation of
synoptic and global scale climate. They are a critical foundation for adaptation planning and for the
scientific provision of locally relevant information about future climate.

1. Introduction

The focus of climate change science and policy has
shifted from global to local. Local changes, particularly
in extremes and at user-specific thresholds, influence
both practical planning [1–4] (adaptation) and indivi-
duals’ perceptions, which ultimately drive mitigation
policy. The much discussed hiatus [5] in global mean
temperature adds urgency to today’s core challenge of
climate science; to understand how global change
arises from and drives changes at small spatial scales. A
key starting point is to quantify the observed changes
in distribution. Some robust aspects of observed
changes in local temperature distributions have been
identified [6, 7], but precipitation raises significantly
greater challenges because our interests are in the tails
of what are often heavier-tailed (leptokurtic) distribu-
tions, and user requirements demand flexible
approaches which quantify different types of hydro-
logical vulnerability and address local factors.

Establishing the connection between changing cli-
mate at global scales and its consequences at local
scales is key for the scientific underpinning of adapta-
tion policy and strategic development initiatives, as
well as for public and policy debates about climate
change. From a research perspective, understanding
the way meso-scale climate alters in response to chan-
ges in local, distant and global forcing, and long term
variations in synoptic patterns, is a critical element of
climate change science. Such research must acknowl-
edge that climate change is a change in distribution [6–
8]. For temperature variables some studies have
extracted distributional information from observa-
tions [9] and from a combination of models and
observations [10, 11]. Such studies have achieved
resolution in distribution at the cost of reliable local
detail, either through assuming spatial correlations or
as a consequence of limits to the fine scale interpreta-
tion of models [12–15]. Non-parametric, non-model-
based analyses have identified some robust aspects of

OPEN ACCESS

RECEIVED

28May 2015

REVISED

15 July 2015

ACCEPTED FOR PUBLICATION

16 July 2015

PUBLISHED

16 September 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd

http://dx.doi.org/10.1088/1748-9326/10/9/094018
mailto:S.C.Chapman@warwick.ac.uk
http://dx.doi.org/10.1088/1748-9326/10/9/094018
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/9/094018&domain=pdf&date_stamp=2015-09-16
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/9/094018&domain=pdf&date_stamp=2015-09-16
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


observed changes in local temperature distributions
[6, 7] but it has been an open question whether such
approaches could be applied to precipitation.

Sub-continental scale assessments of observed
changes have traditionally focused on mean changes
[16] although in recent years the emphasis has shifted
to extremes [17]. A range of indices have been devel-
oped [18, 19] which focus on high percentiles (e.g.
rainfall falling on days above the 99th percentile) and
on absolute extremes (e.g. maximum annual one day
precipitation) but scientific assessments are best
undertaken in the context of changes in the whole cli-
matic distribution [6–8]. Furthermore, climate-vul-
nerable policy decisions, adaptation planning and
impact assessments all have different relevant thresh-
olds and sensitivities. Here we utilize a methodology
which maintains the flexibility to provide information
at different thresholds for different downstream users;
both scientists and decisionmakers.

While previous studies have analysed changes in
regional and local precipitation distributions within
models [20], often using dynamical or statistical
downscaling, the interpretation of model assessments
such as CMIP5 [21] must account for the degree to
which such models can reproduce the observed local
changes in distribution. Whether ones aim is to quan-
tify and understand observed changes directly, or to
interpret models in terms of real world behaviour, a
key question is therefore: to what extent can changes
in local climatic distributions be quantified given the
limited length timeseries available? To answer this
question we begin in section 2 by demonstrating
the implications of unavoidable data constraints,
using idealized parametric precipitation distributions.
European local precipitation timeseries are then ana-
lysed in section 3 in the light of such constraints using
a non-parametric approach. Finally in section 4, maps
of observed changes are presented which reveal spa-
tially extended patterns of threshold dependent chan-
ges. This spatial coherence is interpreted as an
additional source of confidence in the identified char-
acter of (unattributed) local climate change.

2. Fundamental data constraints

To demonstrate the challenges in observational inter-
pretation, daily precipitation in a season is first taken
to be drawn randomly from a gamma distribution
[20, 22, 23] (see appendix). Climate change is repre-
sented by changes in the parameters of the distribution
over a 63 year period leading to distributions with (i)
no change over time, (ii) increasing mean, (iii)
increasing mean, variance, skew and kurtosis, and (iv)
increasing variance, skew and kurtosis but no change
in mean (figures 1(o), (e), (f)). Climate change is then
quantified by changes between distributions separated
by a 45 year period (see appendix). In evaluating the
change in distribution we use four threshold (T)

dependent quantities, herein referred to as climate
change descriptors: (a) change in quantile,ΔQT, which
reflects a change in the rain intensity one would expect
to exceed with a particular frequency [6, 24], (b)
change in total seasonal precipitation above a thresh-
old ΔΣPT, (c) change in total seasonal precipitation
above a threshold as a percentage of the historical
average, relative ΔΣPT, and (d) change in the fraction
of total seasonal precipitation that falls on days wetter
than the threshold, ΔFT. Each descriptor reflects
different aspects of the changing distribution; aspects
which affect different decisions, vulnerabilities and
climatological/hydrological process research. Their
presentation as a function of threshold represents a
generalization of conventional climate change
indices [18, 19].

In this idealized case the underlying distributions
are known and the climate change descriptors can be
accurately quantified by well sampling them in each
year (see appendix). In figures 1(a)–(d) the solid yel-
low lines illustrate this situation of almost perfect
knowledge. In this case the results represent a pre-
cipitation-relevant extension of the common illustra-
tion of climate change in terms of a Gaussian
distribution subject to increasing mean and/or var-
iance [17] (see also SIfigure 1).

The nature of the real-world system, however,
provides data limitations which restrict what we can
know about such quantities from observations. Study-
ing daily precipitation during a season limits the avail-
able data to approximately 90 samples/year from the
underlying distribution. Samples from multiple years
can be combined (the commonly-made kairodic
assumption, e.g. [8]) but if changes are believed to be
occurring on a decadal timescale, as they are under
anthropogenic climate change, then conflating data
from more than a handful of years suppresses the sig-
nal of interest. A balance must therefore be struck
between sampling resolution, the period over which
changes are assessed and the ability to explore uncer-
tainty. In figure 1, data over blocks of nine successive
years is aggregated to represent each year [6] (see
appendix). The distributions are nevertheless still of
limited resolution but multiple evaluations over dif-
ferent overlapping 45 year periods within a single
timeseries can be made and these are plotted as thin
coloured (blue through magenta) lines on
figures 1(a)–(d). Taken together they demonstrate the
considerable uncertainty in data-derived conclusions
regarding the climate change descriptors.

Under no change over time the well-sampled dis-
tributions (bold yellow lines) demonstrate the trivial
conclusion that all the metrics are zero for all thresh-
olds, but variations in their estimates when data is con-
strained are large (figure 1(i)). Furthermore, because
the different estimates of change come from a single
timeseries they are not independent. This increases the
likelihood of substantial biases across all estimates (see
for instance figures 1(i), (b)). There is therefore no

2

Environ. Res. Lett. 10 (2015) 094018 SCChapman et al



Figure 1. Idealized climate changewith limited data andwith almost perfect knowledge. (o) Cumulative distribution functions at the
beginning (black) and end (red) of the illustrative 63 year period for (i) a constant distribution, (ii) increasingmean only, (iii)
increasingmean, variance, skew and kurtosis, and (iv) increasing variance, skew and kurtosis. (a) Solid lines coloured blue through
magenta plot ten samples of change in quantile,ΔQT, overmoving 45 year periods (from themiddle of seasonwithin year 5 to the
middle of the same seasonwithin year 50, 6 to 51,…, 14 to 59)within the 63 year timeseries, where each year’s distribution is
represented by 9 years of data (for year t this includes years t− 4 to t+ 4—see appendix) and each year contains 90 samples from its
underlying distribution. This is analogous to looking at a real-world timeseries built fromone season/year. The bold yellow line shows
the change between years 9 and 54 (a central sample) but taking each year’s distribution as represented by 100 000 samples from its
underlying distribution—also see SIfigure 1. Rows (b), (c), and (d), are as (a) but for the climate change descriptors: (b)ΔΣPT, (c)
relativeΔΣPT, and (d)ΔFT. Plots (o)–(d) are functions of daily precipitation threshold (PT). Largest and smallest changes of consistent
sign (see appendix) aremarkedwith circles and crosses respectively. Rows (e) and (f) show the time-dependence of themean (red),
standard deviation (green), skew (black) and kurtosis (blue) for thewell-sampled case (bold lines) and the realistically sampled case
(standard lines).
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justification for statistically combining them into a
mean or probabilistic estimate. In real world time-
series, long period oscillations (e.g. North Atlantic
Oscillation, Pacific Decadal Oscillation etc) create
inter-annual dependencies which reinforce this pro-
blem. Consequently the most relevant aspects are the
largest, smallest and range of change at any particular
threshold [7, 25] (see appendix), with the smallest
change (when all estimates are consistent in sign)
representing a conservative measure of identifiable
change (figures 1(a)–(d), crosses). Some aspects of the
signal of change can be identified despite these
constraints.

Even in this highly idealized situation the picture is
complicated. Details of both the underlying changes
and their identifiability are in the supplementary dis-
cussion, but two features stand out. First, for changes
above mid- to high thresholds, changes in higher
moments are of far greater significance than changes
in the mean, although changes in the mean can
strongly influence identifiability. Second, conclusions
are hampered by fundamental limits to data but indi-
cations of the underlying changes are nevertheless
sometimes identifiable.

3. European local precipitation timeseries

The idealized analysis suggests that observational
timeseries alone may reveal valuable information but
that accurate quantification of the underlying chan-
ging full distribution is unlikely to be possible. Figure 2
demonstrates that this is indeed the case. Using the
E-Obs [26] dataset, it shows that in South–West
Scotland (figure 2(i)) total winter precipitation has
increased and that relative ΔΣPT is greater for higher
thresholds up to∼25 mm d−1 i.e. there is more overall
precipitation and it is coming disproportionatelymore
on heavy rainfall days. This contrasts with central
Scotland (figure 2(ii)) where there is only a small
identifiable increase in total precipitation but a shift of
what there is towards heavier rainfall days. A very
different response is seen in the Dordogne
(figure 2(iii)) where there is an overall drying signal
with a similar relative ΔΣPT reduction across most
thresholds. In all these cases the range of identified
uncertainty in the response is relatively small and the
signals discussed can be associated with the conserva-
tive, smallest-identified consistent response. This is, of
course, not always the case. In South West Wales
(figure 2(iv)) the range is not only large but includes
zero; e.g. changes in total precipitation range from
zero to 100 mm d−1 and remain broad across most
thresholds. Here variability prevents any confident
identification of threshold-dependent change over the
period studied.

4.Maps of observed changes

Emergent spatial response patterns can provide
increased confidence in identifiable signals, and coher-
ent spatial patterns are found in the identifiable
changes of all climate change descriptors (figure 3 and
SI figure 3). In Scotland quantile changes are particu-
larly large only at the highest quantiles, in South West
France a pattern of decreases can be seen which is large
for all quantiles above the 25th percentile, while across
Northern Germany and the low countries a smaller
but coherent pattern of increased precipitation stands
out around the 75th percentile. Such variations
illustrate the need to consider the whole distribution.
Taking a series of fixed rainfall thresholds instead of
quantile thresholds enables different aspects to be
identified (figure 3(b) and SI figure 3). A reduction in
rainfall amount in South West France can be seen in
relative ΔΣPT at all thresholds. The spatial extent of
identifiable decline decreases at higher thresholds but
the scale of decline does not, indicating that all
intensities of rain are reducing in a similar fashion.
This contrasts with the drying in central-Northern
Italy which has greater reductions in days with
particularly high rainfall, Scotland where increases are
greatest in the heavier rainfall days, and Eastern
Germany/Western Austria where increases are only
identifiably large around the 10 mm d−1, mid-range
threshold. Many of these spatial patterns are also seen
in the largest changes (SIfigures 4 and 5).

5. Concluding remarks

These results highlight the complex and fine-scale
patterns of changing climate, demonstrating that
generic descriptions cannot capture relevant local
characteristics andwill inevitably jar with local percep-
tions. Global/synoptic scale climate changemay some-
times be relatively easily identified but quantifying
how this is reflected in (or built from) mesoscale/local
changes faces intrinsic barriers. Yet such information
is sought for societal planning and the analysis herein
shows that in some regions the precipitation changes,
like the temperature changes [7], have already been so
significant as to be identifiable in distribution despite
the variability and limited length timeseries available.
Such information is of direct value in adaptation
planning.

The results herein represent what might be termed
‘observations of climate change’, as opposed to raw
observations of weather, and as such have a significant
role to play in geophysical research on the meso-scale
modulation of synoptic scale changes. Nascent climate
services initiatives [27] could use such physical science
to guide the conceptual exploration of future possibi-
lities [28] and to evaluate the relevance and trust-
worthiness of model-derived projections, as well as
providing observational data directly through the

4

Environ. Res. Lett. 10 (2015) 094018 SCChapman et al



automated processing of observations for specific
user-relevant thresholds and vulnerabilities.
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Appendix

The analysis herein is founded on the processing of
timeseries of daily precipitation at specific locations,
over a 63 year period, using data from only one season
in each year; in figures 2 and 3 this is the Boreal winter

Figure 2.Climate change for real world local observations. As figure 1 but constructed from 63 years of winter (DJF) data from the
E-Obs [26] dataset for daily precipitation at four locations: (i) SouthWest Scotland, (ii) centralNorth Scotland, (iii) Dordogne, (iv)
WestWales. Latitude/longitude coordinates are given at the head of each column. Lines are colour indexed by the central year in the 45
year period over which differences are calculated. Note that onlywet days are included in the construction of the representative
distribution for each year so the constituent data points are fewer than infigure 1.
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—December/January/February (DJF)—during the
period 1950–2012. Conceptually, the location specific
daily precipitation is considered to be drawn from an
underlying distribution representative of that season
and year. The paper examines the ability to identify
changes in decision relevant thresholds if this distribu-
tion is changing in time.

In the illustrative case (figure 1) the distribution is
taken to be a gamma distribution with shape para-
meter kt and scale parameter θt, where t is the year
index running from 1 to 63. In year zero k1 = 1, and
θ1 = 8. In figure 1, column (i) this distribution remains
constant through the 63 years. In column (ii) the dis-
tribution is simply shifted so that the mean (kθ for a
gamma distribution) linearly increases by
0.025 mm d−1 yr−1. In column (iii), kt monotonically
decreases with time and θt monotonically increases
with time such that the mean linearly increases by
0.025 mm d−1 yr−1 and the variance (kθ2 for a gamma
distribution) linearly increases by 1.4 mm2 d−2 yr−1.
In column (iv), kt monotonically decreases with time
and θtmonotonically increases with time such that the
mean stays constant and the variance linearly increases
by 1.4 mm2 d−2 yr−1. The changes addressed in col-
umns (iii) and (iv) both involve monotonically
increasing skew and kurtosis. The resulting changes
over time of all four moments are presented in
figures 1(e), (f). These distributions are presented only
for the purpose of illustration but the shape para-
meters of the gamma distributions fall within the
domain of those found across Europe in the E-Obs
dataset [26] (SI figure 2) throughout all the timeseries
with the exception of the final few years of case (iv).

The bold lines in figures 1(a)–(d), and all the lines
in SI figures 1(a)–(d), take the number of ‘days in a
season’ to be 100 000 so that in each year the

distribution is well sampled. The thin coloured (blue
through magenta) lines in figure 1 take the number of
days in a season to be 90. This is similar to a real-world
season but the resolution of the cumulative distribu-
tion function built from this number of points is too
small for the subsequent analysis [6, 7]. Distributions
taken to be representative of each year are therefore
constructed using 9 years of data from year t− 4 to
t+ 4 inclusive. This means that samples from different
distributions are combined into one, as they have to be
in the analysis of real-world observations. The choice
of 9 years has been shown in previous studies to pro-
vide a suitable compromise between increasing the
resolution of the distribution and smoothing any
changes in distribution over time [6, 7].

Changes in the climate descriptors are calculated
from these annually representative distributions by
taking differences over ten sample 45 year periods:
years 5 to 50, 6 to 51 … 14 to 59. ΔQT, represents a
change in quantile at constant cumulative probability
[6, 24] e.g. if 95%of days have less than 20 mm d−1 but
previously 95% had less than 15 mm d−1 then the
change,ΔQ0.95, is 5 mm d−1. In row (a) of figures 1 and
2, the daily rainfall thresholds are quantiles used to
reflect the cumulative probability in the distribution
constructed from all 63 years; in this example ΔQ0.95

might therefore be associated with a rainfall threshold
of approximately 17.5 mm d−1. In figure 3 the maps
are each for the same local cumulative probability.
ΔQT is calculated using the method of Chapman et al
2013 [6]. The remaining descriptors are calculated
directly from the data taken to be representative of
each year. Results are not plotted in figure 3 or SI
figures 3–5 if the probability of occurrence at that
threshold is less than 0.001/(mm d−1). In addition,
results are not plotted in figure 3 and SI figure 3, if any

Figure 3.Non-parametric identifiable changes in European precipitation.Maps of the threshold dependent smallest change (where all
changes are of consistent sign) in (a) quantileΔQT, and (b) relativeΔΣPT from the E-Obs [26] interpolated precipitation dataset. The
smallest change is the smallest value at the relevant threshold from ten changes extracted over different overlapping 45 year periods
using the data representative of that grid box and the analysis presented infigure 2. The thresholds presented are: (a) percentiles 25, 50,
75 and 95 in the local precipitation distribution (as constructed from thewhole 63 year timeseries), and (b) 5, 10, 15, and 20 mm d−1.
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of the ten samples have different signs of change at the
relevant threshold. This provides a first order indica-
tion of the insufficiency of the data for this analysis.
We then consider the most informative aspects to be
the largest change (the maximum absolute change—
SI figures 4 and 5), the smallest change (taken to be
zero if the samples have different signs, otherwise the
minimum absolute change—figure 3 and SI figure 3)
and the range (the difference between maximum
change and minimum change). See Stainforth et al [7]
for further discussion.

Figure 2 uses the same method as the thin lines in
figure 1 but with DJF data from four grid boxes of the
E-Obs version 10 dataset [26] which provides time-
series of daily precipitation from1950 to 2012. Year 1 in
the illustrative data corresponds to year 1950 in the
observational data. Coloured lines represent changes
over different 45 year periods indexed by their central
year. Note that although DJF has 90 or 91 days, only
days with non-zero rainfall are included which means
that the number of data points included can be sig-
nificantly fewer. The illustrative case infigure 1 is there-
fore an optimistic scenario in termsof data sample size.

For figure 3 the process underlying figure 2 was
repeated for all E-Obs grid boxes in the European
domain. The smallest change of consistent sign (identi-
fied from the ten evaluations at the given threshold and
gridbox) is plotted. The availability of a gridded dataset
facilitates this analysis but assumptions made in the
interpolation procedure generate their own uncertain-
ties [29, 30] and the varying density of the underlying
station data means that some regions of figure 3 are
more reliable than others. In the provision of climate
services this should be assessedwith respect to the parti-
cular data of interest to specific users. A programme of
work repeating this analysis with reanalysis data, or
even better, station data, would increase confidence in
specific aspects of the results but would not be expected
to change the generalmessages highlighted herein.
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