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We untangle differences in the physical assumptions embedded in three influential integrated 

assessment models. Separating the impact of physical and economic assumptions facilitates 

more interpretable model intercomparisons.

ON THE PHYSICS OF 
THREE INTEGRATED 

ASSESSMENT MODELS
raphael Calel and david a. Stainforth

Integrated assessment models (IAMs) couple simple 
models of the climate and the economy in order to 
simulate the global economic impacts of climate 

change under different mitigation scenarios. IAMs 
are frequently used to inform domestic climate 
change policy and international negotiations (Clarke 
et al. 2014), and policy makers have relied heavily 

on three IAMs in particular—Dynamic Integrated 
model of Climate and the Economy (DICE), The 
Climate Framework for Uncertainty, Negotiation 
and Distribution (FUND), and Policy Analysis for 
the Greenhouse Effect (PAGE)—when trying to bal-
ance the benefits and costs of climate action (Stern 
2007; Watkiss and Hope 2011; Greenstone et al. 2013; 
Interagency Working Group 2010, 2015; EPA 2014; 
Hahn and Ritz 2015).

These IAMs incorporate greatly simplified rep-
resentations of the climate system compared to the 
complicated global climate models (GCMs) used by 
many climate scientists. This allows them to solve a 
demanding set of problems—whether finding an op-
timal policy in the case of DICE, or evaluating climate 
policies over ensembles of many parameter values in 
the case of FUND and PAGE.1 This simplicity could 
also allow these IAMs to serve as a bridge across dis-
ciplines, giving economists and scientists a common 

1 Another important class of IAMs is set up to find the least-cost 
way of achieving a prespecified target. This is, in some sense, 
a less demanding problem, and these models can therefore 
incorporate climate modules that are a great deal more com-
plex. The IPCC’s Fifth Assessment Report lists over 30 such 
IAMs in use (Clarke et al. 2014). Many of them use MAGICC 
to represent the physical climate (see online supplement).
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framework for pinning down the sources of policy 
disagreements. But this is only possible if the models 
are transparent enough for both research communities 
to engage with them.

Economists have previously highlighted several 
economic modeling choices that can have very large 
effects on the policy recommendations of these IAMs, 
including the choice of discount rate (Dasgupta 
2007; Nordhaus 2007; Weitzman 2007) and the 
curvature of the damage function (Ackerman et al. 
2010; Weitzman 2012). These economic sources of 
disagreement are now the subject of exciting new 
research (Millner and Heal 2014; Burke et al. 2015b). 
Unfortunately, in failing to maintain clear links to 
the physical science literature, the climate compo-
nents of these models have become opaque to the 
scientific community. Researchers have consequently 
had less success understanding the physical sources 
of disagreement between these IAMs. This makes it 
more difficult for economists and scientists to work 
together to ensure that the IAMs reflect the latest 
climate science. To draw attention to economically 
important areas of scientific disagreement, as they 
have already done for economic disagreements, these 
IAMs must be made more transparent to the broader 
scientific community.

The authors of these IAMs have already made 
commendable efforts to publish (Nordhaus 2013; 
Anthoff and Tol 2013) and document (Nordhaus 
and Sztorc 2013; Hope 2006, 2011; Anthoff and Tol 
2014) their models, but even with these aids it is often 
prohibitively difficult for the broader community of 
researchers to penetrate their terminology, notation, 
and coding. This makes it difficult to understand 
why they produce different policy recommendations. 
In response, recent studies have begun comparing 
the outputs of these IAMs more systematically and 
comparing them collectively with models found in 
the scientific literature. Van Vuuren et al. (2011) 
and Rose et al. (2014, chapter 5) compare IAMs with 
Earth systems models and with an intermediate-
complexity climate model [Model for the Assess-
ment of Greenhouse Gas Induced Climate Change 
(MAGICC); please see online supplement at http://
dx.doi.org/10.1175/BAMS-D-16-0034.2], respec-
tively, and also subject the models to computational 
experiments to explore how they respond to identical 
emissions, concentrations, and forcings.2 While infor-
mative, these efforts have been confined to comparing 

models based on their outputs, without engaging with 
the IAMs on a conceptual level. Marten (2011), who 
compares IAMs with a simple upwelling diffusion 
energy balance model, comes closest to discussing 
the physical assumptions embedded in these IAMs. 
When we make the physics of IAMs the focus of our 
inquiries, however, we find that there are challenges 
both in interpreting many of the physical parameters 
and equations and in relating them between models—
a problem that cannot be solved by computational 
experiments alone. This acts as a barrier to informed 
dialogue between the economists and policy makers 
who use these IAMs, and the scientists who study the 
physical processes of climate change and estimate 
the physical parameters embedded within them. In 
turn, this hampers our ability to distill today’s best 
understanding into clear policy-relevant information 
(Revesz et al. 2014), and there is now an active debate 
on how to make these models more transparent 
(Nature Climate Change Editorial 2015; Rosen 2015; 
Smith et al. 2015; National Academies of Sciences, 
Engineering, and Medicine 2016).

We focus here on understanding the differences 
in model structure at a conceptual level, which pro-
vides us with clear physical interpretations of dif-
ferences in model inputs and outputs. We show how 
this approach can be used as a basis for successively 
eliminating physically based differences in model 
output, and we illustrate our approach by comparing 
the temperature forecasting components of DICE, 
PAGE, and FUND. These IAMs use different physical 
models to forecast temperatures, different numerical 
approaches to solving these models, different values 
of physical parameters, and different terminologies 
to identify physical parameters. To systematize the 
comparison, we begin by relating their temperature 
forecasting components to simple energy balance 
models of the climate system. This provides a means 
to sort out terminological differences and a way to 
attribute forecast differences to specific modeling 
choices. Our results highlight several explicit and 
implicit physical assumptions in these IAMs that 
deserve greater scrutiny and input from the scientific 
community. These underscrutinized assumptions 
give rise to considerably different visions of the hu-
man and economic costs of climate change.

Our aim is not to show which IAM is best, but 
rather to provide the research community with 
the tools to identify physical reasons why they dis-
agree. Our results can be used as a basis for running 
physically identical baseline simulations in all three 
IAMs, so as to separate the economic sources of dis-
agreement from the physical. Our hope is that this 

2 For further examples, see Warren et al. (2006), Hof et al. 
(2012), Ackerman and Munitz (2012), and Gillingham et al. 
(2015).
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additional transparency enables a more informed 
cross-disciplinary debate about which differences 
ref lect genuine disagreements, thereby helping to 
focus attention and resources where they can most 
improve climate policy.

THE PHYSICS OF IAMS. A natural starting 
point for any effort to increase the transparency of 
DICE, FUND, and PAGE is to look at how they fore-
cast annual-mean, global-mean surface temperature 
anomalies T. One reason is that T is the main input 
for computing the economic damages of climate 
change in these IAMs (see online supplement). A 
second reason is that there is a relatively strong physi-
cal basis for calculating T (see “The physics of tem-
perature forecasts” sidebar). It can be shown that the 
temperature forecasting equations in all three IAMs 
derive from one of two simple physical climate mod-
els. PAGE and FUND are based on a single-equation 
climate model (Andrews and Allen 2008; Senior and 
Mitchell 2000; Dickinson 1986), while DICE is based 
on a two-equation model that divides Earth’s thermal 
mass into one box for the deep oceans and another 
for the upper oceans, land surface, and atmosphere 
(Held et al. 2010; Geoffroy et al. 2013; see sidebar 
on “Forecasting temperature with IAMs” for more 
information). The link to these underlying physical 
models provides a means to translate IAM parameters 
into quantities studied in the scientific literature as 
well as to parameters in other IAMs. The translation 
key is presented in Table 1.

It is noteworthy that all three IAMs include a 
parameter for climate sensitivity (CS)—the equilib-
rium surface warming that results from a doubling of 
atmospheric CO2 concentration—despite this param-
eter not appearing explicitly in the simple physical 

models from which they are derived (see “The physics 
of temperature forecasts” sidebar). In the physical 
science literature, energy balance models of this type 
are almost always written in terms of a “feedback 
parameter” (Dickinson 1982, 1986; Randall et al. 
2007; Flato et al. 2013), often represented by λ as in 
the sidebar on “The physics of temperature forecasts.” 
This parameter captures the combined consequences 
of temperature-dependent physical processes—such 
as changing surface albedo, clouds, increasing at-
mospheric water vapor, changing lapse rate, direct 
radiative effects, and so on—for the radiative balance 
at the surface. In the IAMs and in the economics 
literature, it is common to use the equilibrium cli-
mate sensitivity for this purpose. In equilibrium, the 
climate sensitivity is inversely proportional to the 
feedback parameter, but the trajectory to equilib-
rium inevitably consists of time-varying feedbacks 
(Senior and Mitchell 2000; Gregory et al. 2015)—a 
particularly obvious example is the consequence 
of sea ice decline on surface albedo whose feedback 
becomes zero once all the sea ice is gone. There are 
therefore many time series of λ, and correspondingly 
many temperature trajectories, that would lead to the 
same equilibrium temperature but that can produce 
different conclusions regarding the economic value 
of additional mitigation. It is of course possible to use 
the equilibrium relationship to back out the single 
feedback parameter value that relates to a given value 
of equilibrium climate sensitivity and then apply this 
in every period. This is what the IAMs do.

The IAMs are likely set up this way because of 
the focus on the equilibrium climate sensitivity in 
the physical science literature (Flato et al. 2013; 
Collins et al. 2013), and indeed, the values of CS 
in these IAMs closely ref lect scientific estimates. 

One of the simplest climate change 
models considers the climate system 

as a box for which the rate of change in 
energy content is equal to changes in 
incoming radiation balanced by changes 
in outgoing radiation. This is often 
represented by Eq. (SB1) (Andrews and 
Allen 2008; Senior and Mitchell 2000; 
Dickinson 1986), in which the change in 
incoming radiation is taken to be the 
radiative forcing F (owing principally to 
changes in atmospheric greenhouse gas 
concentrations), and the change in out-
going radiation is taken to be propor-

tional to the global-mean, annual-mean 
surface temperature anomaly T with a 
constant or proportionality λ known 
as the feedback parameter; Ceff is the 
effective heat capacity of the system:

           C
dT
dt

F Teff = − λ . (SB1)

The largest contribution to the effec-
tive heat capacity in Eq. (SB1) is the heat 
reservoir of the upper oceans. A simple 
extension of this model is to allow for 
the diffusion of heat to the deep oceans 
by adding a second box, the “deep 

ocean,” which exchanges heat with the 
surface (or upper ocean) according to a 
one-dimensional heat transfer equation 
(Held et al. 2010; Geoffroy et al. 2013). 
This gives us the system

C
dT
dt

F T T T

C
dT

dt
T T

up
LO

deep

LO
LO

= − − −( )

= −( )

λ β

β
 

.       (SB2)

TLO is the change in temperature 
for the deep ocean. The full parameter 
definitions are listed below Table 1.

THE PHYSICS OF TEMPERATURE FORECASTS
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IAMs forecast annual-mean, global-mean surface temperature anomaly 
T as a function of radiative forcing F. DICE uses the following pair of 

equations to calculate the temperature in each period t:

T T F T T T

T T T

t t t t t t

t t t

= + − − −( )
= + −

 − − − −

− −

1 1 2 1 3 1 1

1 4 1

ξ ξ ξ

ξ

LO

LO LO TTt−( )1
LO

,

where T LO is the change in lower ocean temperature. FUND fore-
casts T with the following equation:

T T Ft t t= −








 +

( )−1
1 1

5 35 21φ φ
CS
ln.

.

PAGE calculates T as follows:

T T F T et t t t
Y Yt t= +

( )
−









 −( )− −

− −( )−
1

1
12

1 1
SENS

FSLOPE
FRT

ln
.

The full parameter definitions, as provided in each model’s docu-
mentation, are listed below Table 1.

These temperature anomaly forecasting equations appear 
quite different at first glance, but each can be derived from a sim-
ple physical model of the climate system. One can show that the 
FUND and PAGE equations correspond to the one-box climate 
model in the sidebar on “The physics of temperature forecasts,” 
while DICE corresponds to the two-box model (see online 
supplement for derivation). This also allows us to reexpress the 
many variously defined and described IAM parameters in terms of 
underlying physical quantities (see Table 1).

FORECASTING TEMPERATURE WITH IAMS

The most likely value of the CS in these IAMs are 
clustered around the IPCC’s Fourth Assessment 
Report’s modal estimate of 3°C (IPCC 2007; FUND, 
3°C; PAGE, 2.54°C; DICE-2010, 3.2°C; DICE-2013, 
2.9°C). FUND and PAGE, which are both designed 
to be run many thousands of times with different 
parameter values, effectively draw values of the 
equilibrium climate sensitivity from right-skewed 
distributions similar to those collected in Bindoff 
et al. (2013). In FUND there is a 74% chance that 
the CS lies in the IPCC’s likely range (≥66% chance) 
of 1.5°–4.5°C (Bindoff et al. 2013); in PAGE it is a 
93% chance.

Although the IAMs do a reasonable job capturing 
uncertainty about the equilibrium climate sensitivity, 
a physical understanding of these equations suggests 
that the material question is uncertainty in the feed-
back parameter. The difference is important for at least 
two reasons. First, the feedback parameter might be 
expected to vary with time or with CO2 concentrations 
(Senior and Mitchell 2000; Meinshausen et al. 2011a), 
which means that uncertainty about the equilibrium 
climate sensitivity need not well reflect our uncertainty 
about temperature changes in coming decades and 

centuries.3 Second, the transformation 
between the equilibrium climate sensitiv-
ity and the feedback parameter should ac-
count for uncertainty in the radiative forc-
ing that results from CO2 doubling (F2×CO2

). 
The IAMs assume very similar values 
for F2×CO2 

 to those commonly cited in the 
scientific literature [F2×CO2

 ≈ 3.7 W m–2 
(Myhre et al. 1998); FUND, 3.71; PAGE, 
3.81; DICE-2010 and DICE-2013, 3.8], but 
they take no account of uncertainty in this 
quantity and therefore potentially under-
state uncertainty about the feedback pa-
rameter. The effective F2×CO2

 across phase 
5 of the Coupled Model Intercomparison 
Project (CMIP5) ensemble is presented by 
the IPCC as having a 90% uncertainty of 
±0.8 (Flato et al. 2013).

To date, sensitivity analyses of IAMs 
have focused on uncertainty in the equi-
librium climate sensitivity (Ackerman 
et al. 2010; Dietz 2011; Pycroft et al. 2011; 
Gillingham et al. 2015). A physical per-
spective suggests that future development 
and sensitivity analyses of these IAMs 
might benefit from engaging with wider 
research on uncertainties in feedbacks, 
including studies on individual physical 
feedback processes (Boucher et al. 2013) 

and studies that quantify the time and state depen-
dency of feedbacks in GCMs (Senior and Mitchell 
2000; Meinshausen et al. 2011a).

Table 1 also reveals a noteworthy difference between 
the IAMs. FUND and PAGE express the thermal inertia 
of the system in terms of an e-folding time (third line of 
the table), while DICE uses heat capacities (although the 
parameters are not presented this way, see fifth and sixth 
lines of the table and online supplement for details). A 
system’s heat capacity is the amount of energy input 
needed to heat it by 1°C, while its e-folding time, like a 
half-life, tells us how long it takes for the system to pass 
a certain distance (measured by the number e) on its 
way to a new equilibrium temperature.4 Both concepts 

3 Confusingly, some studies that quantify the time and state 
dependency of feedbacks in GCMs reinterpret their results 
in terms of a time-dependent “effective climate sensitivity,” 
which is distinct from the equilibrium climate sensitivity 
used in IAMs (Meinshausen et al. 2011b; Senior and Mitchell 
2000; Murphy and Mitchell 1995).

4 As applied to climate, the effective heat capacity is the 
amount of energy input per square meter of surface area that 
leads to an increase in global mean surface temperature of 1°C.
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Table 1. IAM parameter equivalence. Cells are left empty if the parameter in question is not well defined 
within an IAM. We have also indicated where the parameter in question has been hard-coded in the IAM. 
The descriptions and values of IAM parameters below are those used in the IAM’s documentation. Units 
are listed as specified in documentation and omitted whenever unspecified. The parameter values below 
are modal estimates whenever the documentation specifies a probability density function.

Physical/numerical DICE FUND PAGE

CS η CS SENS

F2×CO2
F2×CO2

5.35ln(2) FSLOPE1ln(2)

e-folding time — ϕ∆t FRT × 3.15576 × 107

Ceff —
5 35 2. ln( )

CS
φ∆t

FSLOPE

SENS
FRT1 72

3 15576 10
ln

.
( )

× ×

Cup

∆t
ξ1

— —

Cdeep

ξ
ξ
3

4

∆t
— —

λ ξ2

5 35 2. ln( )
CS

FSLOPE

SENS
1 2ln( )

β ξ3
— —

∆t (Hard-coded) (Hard-coded) (Yt – Yt – 1 × 3.15576 × 107

Physical parameters:
CS: Climate sensitivity (K)
F2×CO2

: Radiative forcing for a doubling of CO2 (W m–2)
e-folding time: e-folding time (s)
Ceff: Effective heat capacity of the climate system (J m–2 K–1)
Cup: Effective heat capacity of the surface (J m–2 K–1)
Cdeep: Effective heat capacity of deep ocean (J m–2 K–1)
λ: Feedback parameter (W m–2 K–1)
β: Heat transfer coefficient between the upper and lower 

ocean (W m–2 K–1)
∆t: Length of time step t (s)

DICE parameters (DICE-2010/DICE-2013R):
ξ1 = 0.208/ξ1 = 0.098: Speed of adjustment parameter for 

atmospheric temperature
ξ2: The ratio of increased forcing from CO2 doubling (F2×CO2

 = 
3.8/F2×CO2

 = 3.8) to the climate sensitivity (η = 3.2/η = 2.9)
ξ3 = 0.31/ξ3 = 0.088: Coefficient of heat loss from atmosphere 

to oceans
ξ4 = 0.05/ξ4 = 0.025: Coefficient of heat gain by deep oceans
∆t: Hard-coded time step of 10 yr/5 yr 

(3.15576 × 108 s/1.57788 × 108 s)

FUND parameters:
CS ~ Γ(k = 6.48, θ = 0.54): Climate sensitivity (°C)
ϕ = max(–42.7 + 29.1 × CS + 0.00I × CS2, 1): e-folding time (yr)
∆t: Hard-coded time step of 1 yr (3.15576 × 107 s)

PAGE parameters:
FSLOPE1 = 5.5: Slope of radiative forcing equation
FRT ~ Triang(a =10, b =65, c = 30): Feedback response time, 

also referred to as the half-life of global warming (yr)
TCR ~ Triang(a =1, b =2.8, c = 1.3): Transient climate response

SENS
TCR

FRT FRT

=
− −( )





1
70

1 70e-
: Climate sensitivity (°C)

Yt: Calendar year at the start of period t

measure the climate’s thermal inertia, but the differ-
ence in terminology and representation complicate 
like-with-like comparison between the models, while 
arguably having more profound consequences as well. 
Heat capacities relate more closely to well-understood 
physical properties of matter (mainly water in the 
oceans) than do e-folding times. Even though their 
representative values on a planetary scale are uncertain 
and time dependent (principally as a consequence of 

ocean circulation), heat capacities are easier to interpret 
in terms of fundamental energy flows and can also be 
linked more directly to physical observations.

How does this play out in the actual values used 
by the models? In FUND, the modal value of the e-
folding time of global warming is 44 yr (ϕ∆t = 44 yr), 
while PAGE assumes the most likely value is 30 yr 
(FRT = 30 yr). DICE uses a single value for each param-
eter rather than an ensemble, and using the expressions 
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in Table 1 we can deduce that DICE-2010 and DICE-
2013 implicitly assume e-folding times of 43.3 and 
41.5 yr, respectively, in their initial simulation periods 
(see online supplement). Expressed as effective heat 
capacities, these IAMs assume that it takes 1.72 GJ 
(FUND), 1.42 GJ (PAGE), 1.62 GJ (DICE-2010), and 
1.73 GJ (DICE-2013) per square meter of surface area, 
respectively, to raise the average surface temperature by 
1°C. All of these estimates are at the high end in com-
parison to Frame et al. (2005), which provide a central 
estimate of about 0.8 GJ m–2 K–1, with a maximum 
5%–95% confidence interval of 0.1–2.05 GJ m–2 K–1. 
The effective heat capacity implied by the distribution 
sampled by FUND exceeds the central Frame et al. 
(2005) estimate with a probability of 0.85 and exceeds 
the top end of the 90% confidence region with a prob-
ability of 0.53. In PAGE, the corresponding probabilities 
are 0.96 and 0.08. Populating the lower end of the range 
would tend to produce a greater spread of temperature 
forecasts in IAMs, since lower heat capacities result in 
more rapid warming (Calel et al. 2015).

There is a further point to note here. The climate 
sensitivity and e-folding time are not chosen inde-
pendently in the ensemble models FUND and PAGE. 
FUND draws a value of the CS from a Gamma distri-
bution and computes the e-folding time as a quadratic 
function of the CS. PAGE, on the other hand, draws 
values of the e-folding time and the transient climate 
response from two triangular distributions and then 
computes the CS. In both cases, the CS and e-folding 
time become positively correlated, although not to the 
same degree (FUND, 0.99; PAGE, 0.58). A correlation 
between these quantities is appropriate—it arises from 
the underlying physical model [Eq. (SB1)]— but the 
functions used in FUND and PAGE go further and 
impose a correlation between the climate sensitivity 
and the effective heat capacity (FUND, 0.9; PAGE, –0.3). 
The processes underlying these quantities are largely 
physically unrelated so one might question whether 
such a relationship is desirable. Estimates of the climate 
sensitivity and the effective heat capacity in the scientific 
literature can be correlated (Frame et al. 2005; Andrews 
and Allen 2008), yet it is worth highlighting that this 
is a statistical correlation that results from trying to fit 
two parameters to a single estimate of past warming. To 
the extent that the underlying physical processes may 
change in the future such relationships need not reflect 
the values, we might wish to sample to explore future 
uncertainty. In any case, the equations describing the 
relationship between the equilibrium climate sensitiv-
ity and e-folding time in FUND and PAGE represent 
additional physical assumptions over and above the 
temperature forecasting equations.

The different representations of the climate system 
also mean that, while FUND and PAGE have effective 
heat capacities that are constant in time, DICE does 
not. DICE has constant heat capacities for each of its 
two constituent boxes (one box representing the up-
per ocean, land surface, and atmosphere and a second 
representing the deep ocean) and consequently has a 
time-varying effective heat capacity for the surface 
temperature. Under the restriction that the model pa-
rameters are constant, the IAMs will therefore behave 
differently even if they begin with values that represent 
identical physical behavior at the surface.

Reexpressing the IAM parameters in physical 
terms facilitates comparisons, particularly with GCMs 
(Geoffroy et al. 2013; Flato et al. 2013), and reveals that 
the differences between these IAMs do not typically 
reflect the uncertainties found in the scientific litera-
ture. Thus, whether the range of climate forecasts from 
these IAMs (or distributions from individual IAMs) 
were bigger or smaller than that found in CMIP5, 
one might reasonably be concerned that they do not 
represent the current state of knowledge. Modeling 
choices underpinning how the feedback parameter is 
calculated tend to understate scientific uncertainty, 
while heat capacities seem to be systematically over-
estimated and their uncertainty underestimated.

Reexpressing IAM parameters in terms typically 
found in the physical science literature also highlights 
that some of the IAMs’ parameters depend on physical 
quantities that few papers evaluate directly. Representa-
tive heat capacities and heat transfer coefficients (as used 
in DICE), for instance, could potentially be calculated 
quite easily from observational datasets by those who 
collect and study them (e.g., Domingues et al. 2008; 
Levitus et al. 2012; Durack et al. 2014), if only they were 
known to be of value for these kinds of policy assess-
ments. Making the IAMs more transparent reveals the 
policy value of carrying out what might often be rela-
tively simple calculations with the latest datasets in hand.

By relating the temperature forecasting components of 
these IAMs to simple physical climate models, we are able 
to identify discrepant physical assumptions more easily. 
Even if the different assumptions were just as plausible, 
understanding that they are a source of differing conclu-
sions is valuable, not least in pointing us toward relevant 
scientific literature to inform model development and in 
directing future research efforts. Next, we show how this 
understanding also allows us to quantify the effects of 
physically based disagreements between IAMs.

QUANTIFYING THE DIFFERENCES. We have 
seen that DICE, FUND, and PAGE make different 
assumptions both about how to represent the climate 
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system and about the values of underlying physical 
parameters. Our preliminary comparisons with the 
scientific literature do not give us confidence that the 
range of assumptions within or across these IAMs cor-
responds to scientific uncertainty. To narrow this gap, 
one might start by substituting the IAMs’ assumptions 
with ones from the literature. This can and has been 
done for a few of the more straightforward issues we 
have raised, such as uncertainty about the value of 
the equilibrium climate sensitivity (Marten 2011), 
but in this particular case the distributions in FUND 
and PAGE seem reasonable to start with. Many of the 
more subtle physical issues we have discussed cannot 
be satisfactorily addressed in this way, unfortunately, 
because of the present gulf between the IAMs and the 
information available in the scientific literature.

A more productive line of inquiry in the short term 
is to compare the IAMs to each other, as they are. This 
will return a conservative answer to the question of 
whether physical differences between these IAMs are 
large enough that they could make a difference in eco-
nomic assessments of climate change. In addition, this 
comparison is an opportunity to put our translation key 
to use. Using the simplest underlying physical model as 
a common reference point allows us to selectively elimi-
nate differences in parameter values or model structure, 
which provides a general method for pinpointing and 
quantifying the consequences of differences in specific 
physical assumptions. This method can be used in future 
studies to run the IAMs with standardized physical as-
sumptions, which would allow them to separate physical 
and economic uncertainties and to conduct baseline 
runs that are more easily comparable across studies.

To isolate differences in the temperature forecasting 
component in these models, we solve their tempera-
ture equations using identical forcing time series. This 
produces the same temperature forecasts as running 
the full IAMs but constraining them to have identi-
cal economies and carbon cycles. Figure 1 shows the 
IAMs’ temperatures forecast up to the year 2300 under 
four representative concentration pathways (RCPs) 
used in CMIP5 (Meinshausen et al. 2011b).5 Even 

with identical forcing assumptions, the IAMs produce 
substantively different temperature forecasts. Under 
the lowest-forcing scenario, the temperature anom-
aly differs by 0.29°C between the highest and lowest 
forecast by the year 2100, rising to 0.45°C by 2150, 
and thereafter the models begin to converge slightly. 
Under higher-forcing scenarios, the forecasts tend to 
diverge more slowly, but ultimately more dramatically. 
The temperature anomaly differs by up to 0.39°C by 
the year 2100 (0.22°C under RCP4.5, 0.17°C under 
RCP6, and 0.39°C under RCP8.5). By 2200 the dif-
ference exceeds 0.50°C (0.55°C under RCP4.5, 0.69°C 
under RCP6, and 0.77°C under RCP8.5), and by 2300 
it reaches a maximum of 1.61°C (under RCP8.5). As 
one would expect, these ranges are somewhat smaller 
than the 5%–95% uncertainty ranges reported for the 
CMIP5 ensemble (as they only reflect uncertainty in 
modal parameter values; see sidebar on “Comparison 
with CMIP5” for more information), but the more 
relevant question is whether these differences are 
large enough that they could be significant for the 
sort of economic questions that these models were 
constructed to answer.

In the RCP8.5 scenario, with Nordhaus’s dam-
age function (Nordhaus and Sztorc 2013) (which is 
considered conservative), and with a discount rate 
of r =  5% (considered high), the net present value 
(NPV) of future damages associated with the most 
damaging forecast is $6 trillion (U.S. dollars) more 
than that associated with the least damaging forecast.6 
For comparison, the average NPV of damages across 
the four IAMs is roughly $54 trillion under the same 
assumptions. So in this case the spread is roughly 
10% of the mean. This is as low as it goes in any sce-
nario we look at; in other scenarios the spread rises 
to more than 50% of mean damages. The difference 
between IAM temperature forecasts can clearly cause 

5 While DICE produces a single forecast, FUND and PAGE 
incorporate uncertainty about parameter values and therefore 
produce distributions of forecasts. For expositional purposes, 
our discussion focuses on forecasts based on modal parameter 
values. This simplification tends to be conservative, and we 
discuss alternative specifications in the online supplement. 
Accounting for uncertainty in the parameter values tends to 
increase the spread across models, though this is left for the 
online supplement since it makes model comparison consider-
ably more complicated and difficult to interpret.

6 In a simple optimal growth model, the discount rate can be 
written as the sum of the pure rate of time preference ρ and 
the product of economic growth g and the elasticity of mar-
ginal utility η: r = ηg + ρ. Conventionally, η is set somewhere 
in the range from 1 to 1.5, which tends to produce a discount 
rate of circa 5% when ρ is around 2%–3%. In this section, we 
obtain the same discount rate by setting ρ = 5% and letting 
η = 0. The assumption that η = 0 means that each dollar is 
worth as much as the next—a linear utility function. In the 
absence of a linear utility function, damages become a func-
tion of additional assumptions about population growth and 
economic inequality, which substantially complicates com-
putation and interpretation. For the sake of completeness, 
the analysis in this section is repeated with a more common 
nonlinear utility function in the online supplement. The 
conclusions remain the same.
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significant variation in the magnitude of predicted 
damages, but a still more relevant comparison is 
perhaps economic output. Current annual world 
output is circa $80 trillion. Assuming that output 
would grow by 2% yr–1 absent climate damages, the 
stream of future gross output is worth $2,800 trillion 
in today’s dollars, or just under $2,750 trillion if we 
subtract average damages.7 The spread of damage 
forecasts, $6 trillion, then corresponds to 0.22% of 

7 In principle, we would want to measure the discounted 
value of an infinite stream of future output, which is a con-
vergent sum as long as the discount rate is sufficiently high. 
Discounting provides a systematic way to compare the value 
of present and future output. Output in the very distant fu-
ture will carry very little weight in the economic calculations. 
In practice, we truncate the economic calculations in 2500 
since this is as far into the future as the RCPs extend. The 
precise year at which the calculations are truncated matters 
less and less the further into the future it occurs.

the average NPV of future 
net output. Table 2 presents 
equivalent values for the 
different scenarios, different 
discount rates, and two fre-
quently discussed damage 
functions. For instance, in 
the same scenario as above, 
but with Weitzman’s more 
cautionary damage function 
(Weitzman 2012), the spread 
in damages is nearly $30 
trillion, or 1.14% of average 
NPV of net output.

Table 2 leads us to make 
two observations. First, the 
differences in temperature 
forecasts across IAMs im-
ply differences of several 
trillion dollars even under 
conservative assumptions. 
In proportional terms, these 
differences can amount to 
over 5% of future output 
with Norhdaus’s damage 
function and nearly 30% 
with Weitzman’s damage 
function. The range of the 
results highlight the im-
portance of disagreements 
about discount rates and 
damage functions, as the 
economics literature has 

done already. But it also shows that, when operating 
within the domain of plausible economic parameter 
values, the physically based disagreements may have 
large enough economic consequences to warrant 
much greater attention. This attention is further justi-
fied by the fact that many physically based disagree-
ments and uncertainties are qualitatively different 
to disagreements about economic parameters, such 
as the discount rate. They reflect the current level 
of understanding of the physical world (which we 
might hope to improve on in the future) rather than, 
for instance, ethical judgements about the relative 
social value of present and future output. Even if 
the physically based disagreements were of smaller 
consequence, there may still be great value in focus-
ing more attention on the physics of IAMs because 
these disagreements may be easier to resolve. Doing 
so makes it easier to disentangle the qualitatively dif-
ferent economic uncertainties that can drive IAMs to 
distinct climate policy recommendations.

Fig. 1. Temperatures under RCP forcing scenarios: (left) The forecasted 
temperature anomaly for the choice of parameter values deemed most 
likely in each IAM. DICE specifies a single value for each parameter, while 
FUND and PAGE specify probability distributions for some parameters. For 
comparison purposes, we take the modal value of relevant parameters in 
FUND and PAGE. We have also included two versions of DICE, owing to the 
extensive use of older versions of DICE in economic assessments of climate 
change. The temperature forecasting components of DICE-2010 and DICE-
2013 are structurally similar, but use different parameter values. (right) The 
maximum difference between forecasts over time.
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It is tempting, but difficult, to com-
pare the range of IAM outputs with 

the range of forecasts made by the 
GCMs in the CMIP5 ensemble. The 
5%–95% model ranges for the period 
2081–2100 in that ensemble—1.4°C 
(RCP2.6), 1.5°C (RCP4.5), 1.7°C 
(RCP6), and 2.2°C (RCP8.5) (IPCC 
2013, Table SPM.2)—are greater than 
the differences we present between 
the IAMs, but the ranges measure fun-
damentally different things. The IAM 
ranges we report pertain to fore-
casts that use modal parameter 
values; the modes of distributions 
that are chosen, presumably, to 
be representative of the best 
scientific understanding of these 
parameters. CMIP5, by contrast, 
is an ensemble of available mod-
els—an ensemble of opportunity 
(Allen and Stainforth 2002). It 
reflects uncertainty in the pa-
rameters themselves, which is of 
course greater than the uncer-
tainty in the modal parameter 
values, so one would expect the 
range of CMIP5 forecasts to be 

significantly greater than the range of 
modal forecasts from the IAMs. At the 
same time, the CMIP5 ensemble is not 
a random sample thought to be rep-
resentative of scientific uncertainty, 
as summarized by the distributions of 
parameters such as climate sensitiv-
ity (Allen et al. 2006); in particular 
it does not reflect the tails of such a 
distribution. Therefore, to the extent 
that FUND and PAGE (the two IAMs 
that explore parameter uncertainty) 

choose parameter distributions to re-
flect the best scientific understanding, 
one would expect the 5%–95% range 
of individual IAM distributions to be 
wider still than the CMIP5 5%–95% 
range. Figure SB1 demonstrates these 
general features, although it is worth 
noting that the CMIP5 ensemble oc-
casionally encompasses a wider range 
than the individual IAM distributions, 
which suggests that these IAMs may 
be too constrained.

COMPARISON WITH CMIP5

▶ Fig. SB1. Comparison with 
CMIP5: The gray lines show 
the CMIP5 ensemble of fore-
casts, downloaded from the 
K N M I  C l i m a t e  E x p l o r e r 
(https://climexp.knmi.nl/, 28 
Sep 2016). The black lines show 
the same modal IAM forecasts 
as in Fig. 1, rebased to the glob-
al mean temperature in FUND 
over the period 1986–2005 to 
provide greater comparabil-
ity with the way the CMIP5 
ensemble is presented by the 
IPCC (IPCC 2013). The shaded 
areas show the 5%–95% confi-
dence regions obtained from 
ensemble runs of FUND and 
PAGE when we draw a large 
random sample from the pa-
rameter distributions specified 
by each (see online supplement 
for details).
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Table 2. Differences in economic damages as a percentage of the NPV of 
future output: In each period, a fraction D(T) of gross economic output is 
lost as a result of climate change, where D(•) is taken to be either Nord-
haus’s or Weitzman’s damage function. Assuming that economic output 
would grow at a rate of g yr–1, absent climate damages, and that we have 
a constant pure rate of time preference ρ, we can write the NPV of the 
flow of damages as = 00

[1/(1 ) ] [ ( )](1 )D S s s

s
Y D T s gρ

=
+ +∑ , where s indexes 

time and Y0 is current world output. Note that this calculation effectively 
uses a linear utility function, so that ρ is equal to the discount rate r. The 
table gives the largest difference across models, max(DICE–2010,DICE–2013R,
PAGE,FUND) – min(DICE–2010,DICE–2013R,PAGE,FUND), as a percentage of 
the average NPV of future output less damages. The numbers in this 
table assume g = 2%. See online supplement for additional discussion and 
scenarios.

r = 2% 3% 5% 2% 3% 5%

RCP2.6 RCP4.5

Nordhaus 0.19 0.17 0.09 0.81 0.41 0.11

Weitzman 0.18 0.17 0.09 1.73 0.80 0.17

RCP6 RCP8.5

Nordhaus 1.54 0.64 0.13 6.59 1.91 0.22

Weitzman 10.20 3.35 0.39 28.65 7.18 1.14

Second, the economic consequences of temperature 
forecast differences are determined by a complicated 
interaction of discounting and damage functions. The 
discount rate determines when forecast differences are 
important, while the curvature of the damage function 
determines at what temperature differences matter 
most. Usually we think of high discount rates as put-
ting less weight on the future costs of climate change 
and lower discount rates as implying higher damage 
costs. However, in a low-forcing scenario most of the 
damages occur relatively early on, so a lower discount 
rate can imply smaller proportional damages. This 
effect is somewhat muted in Table 2, but we see a clear 
example of it in the online supplement where discount-
ing at 2% results in smaller proportional damages than 
discounting at 3% (RCP2.6, g = 3%). More generally, 
larger differences in temperature forecasts are not 
always more economically significant. For certain 
combinations of discount rates and damage functions, 
the damages associated with a smaller absolute differ-
ence in temperature forecasts can be amplified relative 
to future output if this difference occurs at a particular 
time and at a temperature where the damage function 
is strongly curved. This provides a further reason to 
be cautious about dismissing even apparently small 
forecast differences.

Even when the discrepancies between IAMs ap-
pear relatively tolerable in aggregated and discounted 
terms, though, it is important to remember that 
these differences nevertheless represent substantially 

different visions of a warm-
ing world. For instance, as 
the temperature rises we 
may pass several feared 
climatic t ipping points 
(Lenton et al. 2008). The 
horizontal distances in 
Fig. 1 give us a range of 
estimates for when we may 
pass these thresholds (Joshi 
et al. 2011). 

Under RCP6, for in-
stance, we may cross the 
tipping point taken to be 
indicative of triggering a 
dieback of the Amazon 
rain forest (+3°–4°C) as 
much as 20–117 yr soon-
er or later, depending on 
whether we look at FUND 
or DICE, while the PAGE 
forecast allows for the pos-
sibility that we may never 

cross the tipping point if it is at +4°C. The range is 
even greater when we consider parameter uncer-
tainty within FUND and PAGE (see online supple-
ment). The range across IAMs of when a tipping 
point is reached is generally wider in lower-forcing 
scenarios, if the IAMs reach the relevant threshold 
at all. Table 3 summarizes the differences between 
IAMs in terms of date ranges when different global 
mean temperature anomaly thresholds are crossed 
and the associated climatic nonlinearities that may 
be triggered [using estimates from Lenton et al. 
(2008)]. 

Increasing temperatures have also been associ-
ated with an increased frequency and ferocity of 
hurricanes (Emanuel 2005), droughts (Kelley et al. 
2015), depletion of freshwater resources (Jiménez 
Cisneros et al. 2014), and so forth, and recent studies 
have found highly nonlinear responses to rising tem-
peratures in everything from economic productivity 
(Burke et al. 2015b) to agricultural yields (Schlen-
ker and Roberts 2009; Welch et al. 2010), to human 
migration (Bohra-Mishra et al. 2014), and violent 
conflict (Hidalgo et al. 2010; Burke et al. 2015a). We 
cannot easily translate differences in global mean 
temperature into additional deaths from conflict, or 
some such metric, but the differences between IAMs 
represent futures where we may have several more or 
fewer decades before these consequences are upon 
us, decades that could be spent forestalling or better 
adapting to such developments. Now that IAMs are 
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beginning to be extended to incorporate these other 
aspects of a warming world, such as climatic tipping 
points (Lontzek et al. 2015), the differences in the 
physics of IAMs may come to matter more and more.

In sum, whether we measure temperatures (Fig. 1), 
damages (Table 2), or time before tipping points are 
passed (Table 3), there remain substantial discrepan-
cies between IAM forecasts even after eliminating 
differences in radiative forcing. The main source of 
these discrepancies is the different assumptions made 
about the values of the physical parameters. 

RESOLVING THE DIFFERENCES. Using our 
physical translation key (Table 1 and online supple-
ment), each model’s temperature components can be 
run with parameter values that reflect the physical 
assumptions implicit in the other models. Figure 2 
replicates the left panel of Fig. 1 once for the param-
eter values chosen in each model.

Three things are worth noting about Fig. 2. First, 
the temperature forecasts are generally more in line 
with each other when the IAMs use the same initial 
values for physical parameters. The FUND and PAGE 
temperature forecasts now coincide, except for tiny 
differences due to initialization. DICE-2010 and 
DICE-2013R start off almost identical to FUND and 
PAGE, but notable differences begin to appear after 
a few decades. In the first three panels of Fig. 2, the 
highest and lowest predictions now differ by at most 
0.3°C in 2100. In some instances the differences still 
exceed 0.5°C by 2200, and by 2300 the IAMs can differ 
by nearly 1°C in the highest-forcing scenario. Differ-
ences in parameter values sometimes compensate 
for structural model differences, so eliminating the 
variation in the initial parameter values while hold-
ing model structure fixed occasionally increases the 
spread of forecasts. This approach disentangles choices 
of parameters and structure and, thus, provides a way 

Fig. 2. Temperatures with comparable parameter values: As in the left panel of Fig. 1, but within each subplot 
all models are run with the same physical parameter values at the start of their simulation. The parameter 
values used are those taken as default in the model indicated in the title of each subplot.
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Table 3. The timing of tipping points: Columns 2–5 list the ranges of dates across IAMs at which global-
mean, annual-mean temperature anomaly crosses the thresholds indicated in column 1 (1°, 2°, 3°, 4°, 5°, 
and 6°C). Column 6 lists a selection of macroclimatic events along with the estimated ranges of global 
mean temperature, which is taken to be indicative of triggering those events, taken from Lenton et al. 
(2008, their Table 1). See Lenton et al. (2008) for a full description of the events and the methodology for 
estimating the ranges. The events are grouped and sorted by the associated ranges, so they only roughly 
line up with the temperature thresholds in column 1. Column 7 summarizes the key climatic impacts 
thought to be associated with these events, also taken from Lenton et al. (2008). This table defines the 
temperature anomaly relative to 1980–99 to provide greater comparability with how Lenton et al. (2008) 
defines temperature thresholds. 

Tempera-
ture (°C)

Timing range across IAMs
Tipping element (global warming) Key impacts

RCP2.6 RCP4.5 RCP6 RCP8.5

1 2040–45 2038–41 2040–44 2036–38 Arctic summer ice (+0.5°–2°C) Amplified warming

2 — 2079–97 2078–84 2062–64 Greenland ice sheet (+1°–2°C) Sea level +2–7 m

3 — — 2113–33 2083–86 Amazon rain forest (+3°–4°C) Biodiversity loss

4 — — 2179–2296a 2102–09
West Antarctic ice sheet (+3°–5°C)
Atlantic thermohaline circulation 
(+3°–5°C)

Sea level +5 m 
Regional cooling, 
sea level, ITCZ shift

5 — — — 2122–34
Increase of Sahara/Sahel and West 
African monsoon (+3°–5°C)
Boreal forest dieback (+3°–5°C)

Increased carrying 
capacity
Biome switch

6 — — — 2145–64
Increased amplitude of El Niño–South-
ern Oscillation (+3°–6°C)

Drought in SE Asia 
and elsewhere

a Only FUND and DICE-2010 cross the 4°C threshold in scenario RCP6, at least before the year 2500, so that the date range in 
this table understates the range of uncertainty captured by this set of forecasts.

to quantify the effect of any specific disagreement 
about the value of a physical parameter, so long as the 
underlying model structures are sufficiently similar 
to allow translation of parameters. In this case one 
can also eliminate all differences in initial parameter 
values simultaneously, which raises the prospect for 
IAM studies to include baseline assessments with 
standardized physical parameter values.

Second, although the models are now initialized 
with identical physical parameter values and are 
subjected to identical forcings, DICE produces sys-
tematically lower temperature forecasts over time.8 
The slower response of DICE stands in contrast to 
some earlier IAM comparisons (e.g., van Vuuren et al. 
2011) where instead PAGE and FUND were identified 

as responding comparatively slowly. The slow initial 
response of FUND described by van Vuuren et al. 
(2011) is likely a consequence of parametric assump-
tions (earlier versions of FUND had longer e-folding 
times and therefore a slower response), while our 
finding highlights the relative importance of physical 
parameter values and model structure. DICE, unlike 
FUND and PAGE, includes a lower ocean into which 
surface heat can escape. Figure 2 shows that for the 
same initial physical parameter values all models 
respond in a similar fashion at first but that the dif-
ference in model structure, in terms of ocean heat 
uptake, becomes increasingly important over time. 
In physical terms, the structural difference causes 
the effective heat capacity in DICE to vary over time, 

8 The more rapid response of DICE-2013 compared with DICE-2010 (see the first three subplots of Fig. 2) is due to a 70% reduc-
tion in the heat loss to the deep ocean. This comes about by a 70% reduction in the heat transfer coefficient between the upper 
and lower ocean accompanied by a 70% reduction in the heat capacity of the deep ocean. The change in heat capacity is a con-
sequence of a change in the “coefficient of heat loss from the atmosphere to oceans,” which is not compensated for by a change 
in the “coefficient of heat gain by the deep ocean.” These changes imply substantial changes in the physical world—one might 
conceptualize it as substantial decreases in the strength of the global ocean conveyor accompanied by the removal of millions of 
cubic kilometers of deep ocean water. The change appears simply to be a consequence of “calibration,” but no physical explana-
tion is given for it as far as the authors have been able to determine. Equally puzzling changes from previous versions of other 
IAMs can also be found (e.g., the recent reduction in e-folding time from 66 to 44 yr in FUND). Changes of this magnitude go 
beyond fine tuning and this is a good example of where climate scientists could offer useful input and where that community 
might want to be involved in the discussion of suitable values.
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while it is constant in FUND and PAGE (see online 
supplement). This suggests a method for quantifying 
the consequences of structural differences between 
the IAMs—provide time-varying effective heat ca-
pacities in FUND and PAGE to mimic those seen 
in a similar scenario in DICE, or let the parameters 
in DICE vary over time to produce a more stable ef-
fective heat capacity. In the limit, we can eliminate 
the structural difference by letting the parameters 
in DICE vary so that the implied effective heat ca-
pacity is constant. Figure 3 shows that this almost 
entirely removes the remaining differences between 
temperature forecasts. This approach can be used in 
future IAM studies to conduct baseline assessments 
with identical physical assumptions, both about the 
values of physical parameters and model structure.

Third, a striking aspect of Fig. 2 is the numeri-
cal instability of DICE and FUND when run with 
the long time steps used by PAGE. It is this same 
instability, coupled with slightly different dates of 
initialization, that prevents DICE and FUND from 
exactly matching PAGE in the second panel of Fig. 3. 
This is arguably less interesting since these models 
do not typically attempt to use such long time steps. 
Nevertheless, it does illustrate the potential for insta-
bility and therefore the value of maintaining the time 
step ∆t as a separate parameter that can be varied to 
facilitate running model ensembles and sensitivity 
analyses where parameters can take values in the tail 
of their probability distribution (see online supple-
ment discussion of numerical representation).

These IAMs represent three legitimately dif-
ferent sets of modeling choices, and policy makers 
can benefit from access to IAMs that ref lect the 
range of economic and scientific uncertainty and 
disagreement. Linking the physics of these IAMs 
on a conceptual level allows us to see how well the 
range of IAMs corresponds to the range of scientific 
uncertainty and to have a much more precise and 
transparent discussion about the nature and conse-
quences of those different modeling choices. Many 
scientific uncertainties remain—for instance, there 
is uncertainty about the consequences for climate 
change of present-day ocean circulation patterns 
and the current rate of ocean heat uptake (Hawkins 
et al. 2016), and how these might vary in the future 
(Gregory et al. 2015)—but uncertainty about these 
quantities is qualitatively different to uncertainties 
about many economic parameters, such as the rate of 
time preference. It is possible to bring the physics of 
these IAMs into the open and to standardize physical 
assumptions across IAMs in a rigorous way. This al-
lows us to selectively eliminate differences in forcing, 
parameter values, and model structure (summarized 
in Fig. 4), which makes it easier for model calibra-
tions to treat these model differences separately so 
that we do not conflate qualitatively different types 
of uncertainty.

GOING FORWARD TOGETHER. While it is 
useful for policy makers to have access to different 
IAMs, it is also critical that these models are openly 

Fig. 3. Temperatures with constant effective heat capacities: As in the leftmost and rightmost panels of Fig. 2, 
but varying the IAM parameters in DICE-2010 and DICE-2013R so that the implied effective heat capacity is 
constant over time. See online supplement for a full explanation of how the IAM parameters are calculated.
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Fig. 4. Differences between IAM forecasts: Each polygon encompasses the forecast ranges (from Figs. 1, 2, and 3) at 
a particular point in time (2100, 2200, or 2300) associated with a given RCP scenario (2.6, 4.5, 6, or 8.5); individual 
ranges are represented by the colored dots. The forecast ranges from the rightmost panels of Figs. 2 and 3 are 
omitted owing to their numerical instability. The different colors denote different RCPs, as in Fig. 1. Going left to 
right within each polygon, we see that differences in IAM temperature forecasts diminish when we standardize 
forcing, parameter values, and model structure. The diagonals of the polygons are shown to help guide the eye.

examined and reexamined by economists and the scien-
tific community to ensure that they reflect our current 
best understanding, and so that we can identify areas of 
disagreement where research would be most valuable.

While economists have honed in on a handful of 
critical economic modeling choices in recent years, the 
broader scientific community has been less successful 
distilling and comparing the physics of the three IAMs 
that have probably been the most influential in policy 
debates—DICE, FUND, and PAGE. Our approach has 
been to start from a physical understanding of the cli-
mate component of these IAMs and then successively 
eliminate sources of disagreement—first standardizing 
assumptions about forcing, then the values of physical 
parameters, then model structure, leaving only nu-
merical representation differences (further discussed 
in the online supplement). Our aim is not to say which 
IAM is better for what purpose but to provide a com-
mon framework that allows systematic comparison 
and informed debate about their differences.

We find that, even with identical economies, these 
three IAMs produce substantially different climate 
change forecasts. These differences may not be as 
significant as the choice of discount rate or damage 
function, but they nevertheless correspond to many 
trillions of dollars of damage and should not be casu-
ally dismissed. By tracing the climate components of 
IAMs back to basic physical models, we can clarify 
the sources of these disagreements, pointing to where 

in the scientific literature one might look to resolve 
them. For instance, we find that there is significant 
disagreement about the effective heat capacity across 
IAMs, and the models even disagree over how to 
incorporate heat-capacity-like information. Our 
approach allows one to selectively remove variation 
arising from a specific source of disagreement and, 
thereby, to quantify its importance.

Our analysis also suggests a need for caution in 
future IAM development. Many consequential differ-
ences can be embedded in just one or two equations, 
even in equations with a strong and sometimes identi-
cal physical basis. If we race to make IAMs yet more 
complex, it is likely that it also becomes more dif-
ficult to understand why they disagree. In the earlier 
example of ocean dynamics, for instance, FUND and 
PAGE are built on a one-box model, while DICE uses 
a two-box model to capture the fact that there is heat 
loss to the deep ocean (and thus a time-varying effec-
tive heat capacity) as the surface warms. A diffusive 
ocean (Hansen et al. 1985) would capture this effect 
better, and a three-dimensional ocean circulation 
model better still. It is tempting to steadily increase 
model complexity, maybe to the point of embed-
ding economic components into three-dimensional 
GCMs, or by separating the physical and economic 
components and using GCM output as direct inputs 
to economic evaluations (Burke et al. 2015b). Yet, 
it may be more beneficial to consider strategies to 
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improve the dynamic behavior of IAMs without in-
creasing model complexity. An alternative to adding 
a second box (increasing model complexity) would be 
to represent changing ocean heat uptake by introduc-
ing a time-dependent or temperature-dependent heat 
capacity. This allows the one-box model to replicate 
the dynamics of the more complex two-box model 
or of GCMs and other models of plausible responses. 
Such an approach may be less intellectually satisfying 
because it makes the process exogenous to the model. 
On the other hand, it creates a requirement for those 
researchers to consult with ocean dynamicists who 
are arguably best placed to judge the range of plausible 
ocean circulation responses and their effect on energy 
flows, which might ultimately produce results that 
better reflect current understanding of the relevant 
processes; better perhaps than could be achieved with 
extra equations. A similar argument can be made for 
climate sensitivity and the feedback parameter, both 
of which are taken to be constant in these IAMs but 
would in practice be state dependent and, therefore, 
time dependent (Senior and Mitchell 2000; Williams 
et al. 2008). There are clearly advantages and disad-
vantages to any strategy—whether adding equations, 
time-varying parameters, or some other approach—
and we urge only that further complexity be justified 
in the context of the aims of the model and after 
consideration of all options, not simply because there 
is greater computational capacity to implement it.

Our findings and method can be put to at least 
one immediate practical use. Having made explicit 
the link between these IAMs and the underlying 
physical models of the climate system, we have 
gained the ability to translate between IAMs using 
a common physical language. This translation key 
will enable multimodel policy assessments to run all 
three models with physically comparable baseline 
scenarios, which would isolate the economic sources 
of disagreement. 

In the longer term, we believe that increasing the 
visibility of the link between the physical sciences 
and the economic analyses will also help the scientific 
community focus more keenly on those unresolved 
questions that loom largest in policy assessments. We 
also hope that making these IAMs more accessible to 
the scientific community will invite further scientific 
expertise into the IAM community, so that economic 
assessments of climate change reflect the latest physi-
cal understanding of the climate system.
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